Word Problem Worksheet \& Solutions
 Nanyang Paper 2

 P6 Mathematics Prelim 2023Show your working clearly in the space provided for each question and write your answers in the spaces provided. Questions can be found at the end of the worksheet.
6.

Area of $A B C D=1 / 2 \times 6 \times 4 \times 2=24$ sq units
Area of ADEF $=(2 \times 5)+1 / 2 \times 5 \times 2 \times 2=20$ sq units
Area of CDGH $=1 / 2 \times 4 \times 4+1 / 2 \times 4 \times 2=12$ sq units
Ratio of area of ABCD to area of ADEF to area of CDGH $=24: 20: 12=6: 5: 3$
Ans: a) see fig
b) see fig
c) $6: 5: 3$
7. Let $\mathrm{u}=$ price of chicken puff

Price of beef puff $=u+1.20$
Price of 9 chicken puff $=9 u$
Price of 5 beef puff $=5 \times(u+1.2)=5 u+6$
Price of 9 chicken puff $=$ Price of 5 beef puff
$9 u=5 u+6$
$4 u=6$
$u=6 \div 4=1.50$
Total spending of Mrs Tan and Mrs Lim = 9u x $2=9 \times 1.5 \times 2=\$ 27$
Ans: \$27
8. Let number of ice-cream sticks used by each to build popsicles $=u$ Janet Samuel Farhana

Used u	u	u
Left $3 / 4 \mathrm{u}$	$\frac{1}{3} \mathrm{u}$	$\frac{7}{2} \mathrm{u}$

$3 / 4 u+\frac{1}{3} u+\frac{7}{2} u=\frac{9+4+42}{12} u=\frac{55}{12} u$
$\frac{55}{12} u=1265$
$u=1265 \times \frac{12}{55}=276=$ number of ice-cream sticks used by each of them

Ans: 276
9. Number of man-hours on the computer $=2 \times 3=6$ man hours

Average number of hours each girl work on the computer $=6 \div 5=1.2$ hour = 1 hour 12 minutes

Ans: 1 hour 12 minutes
10. Difference in distance $=30 \mathrm{~km}$

Mid-point Time $=$ Distance \div Difference in speed $=30 \div 25=1.2 \mathrm{hr}$
Time of Patrick to reach Town $B=1.2 \times 2+800=2.4 \mathrm{hr}+800=1024$

Ans: 1024
11. a)

Volume of water $=11 \times 13 \times 13=1859 \mathrm{~cm}^{3}$
b)

Additional height of water from cubical container $=1859 \div(25 \times 22)=3.38 \mathrm{~cm}$
Height of water in Tank Y in the end $=\frac{5}{7} \times 28=20 \mathrm{~cm}$
Initial height of water in Tank $Y=20-3.38=16.62 \mathrm{~cm}$

Ans: a) $1859 \mathrm{~cm}^{3}$
b) 16.62 cm
12. a)

Number of 2 cm cubes $=(32 \div 2) \times(24 \div 2) \times(12 \div 2)=1152$
b)

Number of unpainted 2 cm cubes $=((32-4) \div 2) \times((24-4) \div 2) \times((12-4) \div 2)$
$=560$

Ans: a) 1152
b) 560
13. a)

Amount collected by Janice $=12 \times 5+7 \times 8=\$ 116$
Amount collected by Deepa $=7 \times 5+9 \times 8=\$ 107$
Amount collected by Zi Ying $=6 \times 5+10 \times 8=\$ 110$
Janice collected the most amount of $\$ 116$
b)

Number of card sold by Bradley $=7+9=16$
Difference in price between big and small cards $=8-3=\$ 3$
Difference in number of small cards $=15 \div 3=5$
Number of small cards $=7+5=12$

Ans: a) Janice, \$116
b) 12
14. a)

Girl standing Boy standing Girl sitting Boy sitting

1	0	$2 u$	u	
0	1	26	13	(let $u=13$)
0	$9 v$	$4 v$		
	27	12	(let $v=3$)	

Total number of children $=26+13+1=40$
b)

Total children at first	27	13	
Remainder children	$9 p$	$2 p$	
	18	4	(let $p=2$)
Children left	9	9	

Total children left for competition $=9+9=18$
Ans: a) 40
b) 18
15. a)
$\angle \mathrm{FMG}=1 / 2 \times(180-45)=67.5^{\circ}$
(FMG is isosceles triangle)
b)
$\angle F E L=2 \times \angle F L E$
$2 x \angle F L E+\angle F L E=90^{\circ}$
$\angle F L E=90 \div 3=30^{\circ}$
$\angle \mathrm{GEL}=45-\angle \mathrm{LEH}=45-\angle \mathrm{FLE}=45-30=15^{\circ}$
c)
$\mathrm{KJE}=\mathrm{LEH}=30^{\circ}$
(KEJ is isosceles triangle)

Ans: a) 67.5°
b) 15°
c) 30°
16. a)

Most number of laptops were sold on Day 3
b)

Number of laptops sold on first 2 days $=150-90=60$
Percentage of laptops sold on first 2 days $=60 \div 150 \times 100=40 \%$
c)

Undiscounted price $=1288 \div 0.8=\$ 1610$
Price with 50% discount $=1610 \times 0.5=\$ 805$
Total sales $=1288 \times 130+805 \times 20=167440+16100=\$ 183540$
Ans: a) Day 3
b) 40%
c) $\$ 183540$
17. a)

Area of semi-circle $=1 / 2 \times 3.14 \times 8 \times 8=100.48 \mathrm{~cm}^{2}$
b)

$X-Y=(X+Z)-(Y+Z)$
$X+Z=8 \times 8-1 / 4 \times 3.14 \times 8 \times 8=13.76 \mathrm{~cm}^{2}$
$Y+Z=1 / 2 \times 16 \times 8=64 \mathrm{~cm}^{2}$
$X-Y=64-13.76=50.24 \mathrm{~cm}^{2}$
Ans: a) $100.48 \mathrm{~cm}^{2}$
b) $50.24 \mathrm{~cm}^{2}$

