Word Problem Worksheet

\& Solutions
Catholic High Paper 2
P6 Mathematics Prelim 2023

Show your working clearly in the space provided for each question and write your answers in the spaces provided. Questions can be found at the end of the worksheet.
6. Let price of book $=p$

	Nathan	Mabel
Amount at first	$\$ 92$	$\$ 50$
Bought book	-p	-p
Amount left	5	2
	70	28

Book price $=92-70=\$ 22$

Ans: $\$ 22$
7. $\angle \mathrm{CDG}=360-260-90=10^{\circ}$
$\angle G D H=\angle C D A-\angle C D G=75-10=65^{\circ}$
$\angle F H D=360-90-90-65=115^{\circ}$

Ans: 115°
8. a)

Ratio of Group A 10-km route vs that of Group B $=\frac{90}{360} \times 2: \frac{20}{100}=0.5: 0.2=5: 2$
b)

Participants in Group B=150 $\div 3=50$
Number of people in Group B's 5 -km route $=0.48 \times 50=24$
Distance travelled $=24 \times 5=120 \mathrm{~km}$
Number of people in Group B's $10-\mathrm{km}$ route $=0.2 \times 50=10$
Distance travelled $=10 \times 10=100 \mathrm{~km}$
Number of people in Group B's $2-\mathrm{km}$ route $=50-24-10=16$
Distance travelled $=16 \times 2=32 \mathrm{~km}$
Total distance travelled by Group B $=120+100+32=252 \mathrm{~km}$

Ans: a) 5:2
b) 252 km
9. $\angle \mathrm{AEF}=85-\angle \mathrm{BFE}=85-27=58^{\circ}$
$\angle \mathrm{FAB}=1 / 2 \times(180-58)=61^{\circ}$
$\angle A F B=180-85-61=34^{\circ}$
(CEF isosceles, external angle) (AEF isosceles)

Ans: 34°
10. Maverick's speed $=3000 \div 24=125 \mathrm{~m}$ per min Difference in Nathan's speed $=825 \div 15=55 \mathrm{~m}$ per min Nathan's speed $=125+55=180 \mathrm{~m}$ per min

Ans: 180 m per min
11. a)

Day 4
b)

Discounted price for every $\$ 300=300-50=\$ 250$

Number of $\$ 250$ blocks in $\$ 4600=4600 \div 250=18 \mathrm{R} \$ 100$
Undiscounted price $=18 \times 300+100=5400+100=\$ 5500$

Ans: a) Day 4
b) $\$ 5500$
12. a)

Let length of triangle $=u$
Base of triangle $=p$
Perimeter of $A B C D=4 u+4 p$
Perimeter of PQRS $=2 u+4 p$
Difference in perimeters $=(4 u+4 p)-(2 u+4 p)=2 u=56$
$u=56 \div 2=28 \mathrm{~cm}=$ length of $Q R$
b)

Length of small square $=\mathrm{sq}$ root of $225=15 \mathrm{~cm}$
Length of $A B C D=28+28-15=41 \mathrm{~cm}$
Area of $A B C D=41 \times 41=1681 \mathrm{~cm}^{2}$
Ans: a) 28 cm
b) $1681 \mathrm{~cm}^{2}$
13. a)
Abel Ben Chris

At first 35u

Changes
Changes $\left(-\frac{1}{7}-\frac{2}{5}\right) \times 35 u \quad+\frac{1}{7} \times 35 u$ $-19 \mathrm{u}+5 \mathrm{u}$

A the end 16u

Fraction of Abel's tart in the end $=\frac{35-19}{35}=\frac{16}{35}$
b)

At the end $4 p \quad 3 p \quad 9 p$
Total at the end $=4 p+3 p+9 p=16 p=448$
$p=448 \div 16=28$
At the end $112 \quad 84$ (substitute p with 28)
$16 u=112, \quad u=112 \div 16=7$
Difference between Chris \& Ben's $=(252-14 u)-(84-5 u)=168-63=105$
Ans: a) $\frac{16}{35}$
b) 105
14. a)

Radius of big circle $=14 \mathrm{~cm}$
Radius of small circle $=1 / 2 \times(28-8)=10 \mathrm{~cm}$
Area of small quarter circle $=1 / 4 \times \pi 10 \times 10=25 \pi$
Area of big quarter circle $=1 / 4 \times \pi \times 14 \times 14=49 \pi$
Difference $=49 \pi-25 \pi=24 \pi$
Shaded area $=25 \pi+24 \pi=49 \pi=153.86 \mathrm{~cm}^{2}$
b)

Perimeter of small quarter circle $=1 / 4 \times \pi \times 2 \times 10=5 \pi$
Perimeter of big quarter circle $=1 / 4 \times \pi \times 2 \times 14=7 \pi$
Perimeter of shaded area $=5 \pi+7 \pi+14+14=12 \pi+28=65.68 \mathrm{~cm}$
Ans: a) $153.86 \mathrm{~cm}^{2}$
b) 65.68 cm
15. a)

Base area of $P=1480 \div 18.5=80 \mathrm{~cm}^{2}$
b)

Volume of water in Q at first $=2 \times 40 \times 9=720 \mathrm{~cm}^{3}$
Total water volume $=1480+720=2200 \mathrm{~cm}^{3}$
Total base area $=80+40 \times 9=440 \mathrm{~cm}^{2}$
Water level in the end $=2200 \div 440=5 \mathrm{~cm}$

Ans: a) $80 \mathrm{~cm}^{2}$
b) 5 cm
16. a)

Let $100 \mathrm{u}=$ total number of stars
Silver stars $=0.3 \times 100 u=30 u$
Bronze stars $=30 u+12$
Number of gold stars $=100 u-30 u-30 u-12=40 u-12=100$
$40 u=100+12=112$
$u=112 \div 40=2.8$
Total number of bronze and gold stars $=100+30 u+12=196$
b)

At first, Bronze stars $=96$, Silver stars $=30 u=84$, Gold stars $=100$
Let $p=$ increase in silver stars
Percent of silver stars $=\frac{(84+p) x 100}{100+96+84+p}=44$
$8400+100 p=44(280+p)=12320+44 p$
$100 p-44 p=12320-8400=3920$
$56 p=3920$
$p=3920 \div 56=70=$ number of silver stars from uncle

Ans: a) 196
b) 70
17. a)

Height of plate $=20-2 \times 6=8 \mathrm{~cm}$
b)

Arrangement A packs more plates
Height of plates in Arrangement $A=n \times 6+2=6 n+2$
$6 n+2=100$
$6 n=100-2=98$
$n=98 \div 6=16 R 2 \approx 16=$ number of plate in A
Height of plates in Arrangement $B=8 n$
$8 \mathrm{n}=100$
$n=100 \div 8=12.5 \approx 12$
Additional plates in Arrangement $\mathrm{A}=16-12=4$

Ans: a) 8 cm
b) 4

