Class Register Number Name

南洋女子中学校 NANYANG GIRLS' HIGH SCHOOL

End-of-Year Examination 2015 Secondary Three

INTEGRATED MATHEMATICS 2

2 hours

Monday

5 Oct 2015

0845 - 1045

READ THESE INSTRUCTIONS FIRST

INSTRUCTIONS TO CANDIDATES

- 1. Write your name, register number and class in the spaces at the top of this page.
- 2. Answer questions 1 11 before attempting question 12 (Bonus Question).
- 3. Write your answers and working on the separate writing paper provided.
- 4. Omission of essential working will result in loss of marks.
- 5. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION FOR CANDIDATES

- 1. The number of marks is given in brackets [] at the end of each question or part question.
- 2. The total number of marks for this paper is 80.
- 3. You are reminded of the need for clear presentation in your answers.

This document consists of 6 printed pages.

Nanyang Girls' High School

Setter: OLH

odin

2

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \ .$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \cot^2 A$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}ab \sin C$$

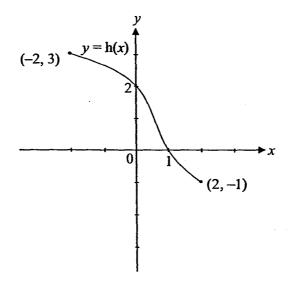
- 1 (a) Find the range of values of x for which $(6-x)^2 > x$. [3]
 - (b) The roots of the quadratic equation $x^2 3x + 5 = 0$ are α and β . Find a quadratic equation with integer coefficients and with roots $\alpha^2 \frac{1}{\beta}$ and

$$\beta^2 - \frac{1}{\alpha}.$$
 [4]

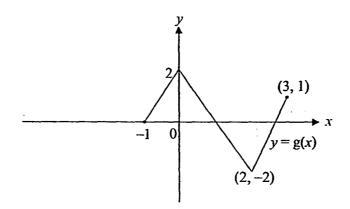
2 Solve each of the following equations.

(a)
$$e^x - 7 = 2e^{-x}$$
 [4]

- **(b)** $\log_9 y 2 = \log_3 y$ [3]
- (a) The function y = f(x) undergoes two transformations:


 I: Translation in the positive x-direction by 5 units,
 II: Scaling in the y-direction by a factor of 2.

 The final function is y = 2x² 16x + 32. Find the function f(x). [3]
 - (b) (i) Sketch the graph of $y = \ln (x 1)$, labelling clearly the intercept(s) and asymptote. [2]
 - (ii) By adding a suitable straight line to the graph in part (b)(i), find the number of solutions to the equation $x = \frac{1}{e^{3-x}} + 1$. [2]
- 4 Solve the simultaneous equations


$$27^{x} \div 3^{y} = 9,$$

 $2^{2x} \times 4^{1-y} = 64.$ [4]

- The value, V dollars, of a vehicle depreciates over time. Given that $V = 84000e^{kt}$, where t is the time in years since it was bought and k is a constant, calculate
 - (i) the initial value of the vehicle, [1]
 - (ii) the value of k if, after 3 years, the value of the vehicle has halved, [2]
 - (iii) the value of t when the value of the vehicle is one-fifth its original value? [2]

- 6 (a) A curve has the equation $y^2 + (x+p)^2 = 8$, where p is a constant. Find the range of values of p for which the line y = x + 4 meets the curve. [4]
 - (b) Given that $y = x^2 4x + c$, find the value of the constant c for which the minimum value of y is 3. [3]
- 7 Answer the whole of this question on the INSERT provided.
 - (a) The graph of y = h(x) is given in the diagram. On the same axes shown on the INSERT, sketch the graph of $h^{-1}(x)$. [3]

(b) The graph of y = g(x) is given in the diagram. On the same axes shown on the INSERT, sketch the graph of y = g(2x) + 1. [2]

8	Given the function	$y = -\sin\left(\frac{x}{2}\right)$	-1 for $x \ge 0$ radian.
		(4)	

- (i) State the maximum and minimum value of y. [2]
- (ii) State the period of y. [1]
- (iii) State the amplitude of y. [1]
- (iv) Find the smallest value of x such that y = 0. [2]
- (v) Sketch the graph of $y = \left| -\sin\left(\frac{x}{2}\right) 1 \right|$ for $0 \le x \le 2\pi$.
- 9 (a) Express the following in terms of $\sin \theta$, $\cos \theta$ or $\tan \theta$, where θ is an acute angle.

(i)
$$\tan(2\pi + \theta)$$
, [1]

(ii)
$$\sin(2\pi-\theta)$$
, [1]

(iii)
$$\cos\left(\theta - \frac{\pi}{2}\right)$$
. [1]

(b) Solve the equation

30

$$\tan x + 2 \sec^2 x - 5 = 0$$
, for $0 \le x \le 2\pi$. [5]

10 (a) Prove the identity cosec
$$A - \cot A = \frac{\sin A}{1 + \cos A}$$
. [3]

(b) Given that A and B are in different quadrants, $\tan A = -\frac{3}{4}$, $\cos B = -\frac{5}{13}$,

 $0^{\circ} \le A \le 270^{\circ}$ and $0^{\circ} \le B \le 270^{\circ}$. Without using a calculator, find the value of

(i)
$$\cos A$$
, [2]

(ii)
$$\tan B$$
, [2]

(iii)
$$\operatorname{cosec} A \operatorname{sec} B$$
, [2]

11 The functions f and g are defined by

$$f: x \mapsto \frac{3}{2x+1}$$
 for all values of x except $x = -\frac{1}{2}$,

$$g: x \mapsto x^2 - 3x + 1$$
.

- (i) Find the values of x which map onto themselves under the function f. [3]
- (ii) Find, in similar form, f². State the domain clearly. [3]
- (iii) Express g(x) in the form of $h(x+k)^2 + n$ where h, k and n are constants. Hence, deduce the range of the function g. [3]
- (iv) If the domain of g is $x \le c$ where c is a constant, state the maximum value of c for which the function g^{-1} exists. Hence, find the function g^{-1} in similar form. [4]

Bonus Question

12 If
$$a > b > 1$$
 and $\frac{1}{\log_a b} + \frac{1}{\log_b a} = \sqrt{293}$, find the value of $\frac{1}{\log_{ab} b} - \frac{1}{\log_{ab} a}$. [3]

END OF PAPER

2015 Sec 3 IM2 EOY Mark Scheme

	Sec 3 IM2 EOY Mark Scheme	
1a	$(6-x)^2 > x$	
	$36-12x+x^2>x$	
	$ x^2 - 13x + 36 > 0 $	
	(x-9)(x-4) > 0	
	$36 - 12x + x^{2} > x$ $x^{2} - 13x + 36 > 0$ $(x - 9)(x - 4) > 0$ $x < 4 \text{ or } x > 9$	
1b	$\alpha + \beta = 3, \ \alpha\beta = 5$	
	$\alpha^2 - \frac{1}{1} + \beta^2 + \frac{1}{2} - \alpha^2 + \beta^2 + \frac{1}{2} = \frac{1}{2}$	
	$\alpha^2 - \frac{1}{\beta} + \beta^2 - \frac{1}{\alpha} = \alpha^2 + \beta^2 - \frac{1}{\alpha} - \frac{1}{\beta}$	
	$(\alpha + \beta)$	
	$= (\alpha + \beta)^2 - 2\alpha\beta - \left(\frac{\alpha + \beta}{\alpha\beta}\right)$	
	$=9-10-\left(\frac{3}{5}\right)$	
	$=-\frac{\circ}{5}$	
	$\begin{pmatrix} 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \end{pmatrix}$	
	$\left(\alpha^2 - \frac{1}{\beta}\right)\left(\beta^2 - \frac{1}{\alpha}\right) = (\alpha\beta)^2 - \alpha - \beta + \left(\frac{1}{\alpha\beta}\right)$	
	$= (\alpha \beta)^2 - (\alpha + \beta) + \left(\frac{1}{\alpha \beta}\right)$	
	(42)	
	$=25-3+\left(\frac{1}{5}\right)$	
	111	
	$=\frac{111}{5}$	
	New equation: $x^2 + 8 = 111$	
	New equation: $x^2 + \frac{8}{5}x + \frac{111}{5} = 0$	
	$5x^2 + 8x + 111 = 0$ $e^{2x} - 7(e^x) - 2 = 0$	
2a	$e^{2x} - 7(e^x) - 2 = 0$	
	$(e^x)^2 - 7(e^x) - 2 = 0$	
	$e^x = \frac{7 \pm \sqrt{49 - 4(1)(-2)}}{120}$	
	2	
	$e^x = \frac{7 + \sqrt{57}}{2}$ or $\frac{7 - \sqrt{57}}{2}$ (NA)	
	$e = {2}$ or ${2}$ (NA)	
	$7 + \sqrt{57}$	
	$\therefore x = \ln \frac{7 + \sqrt{57}}{2} \text{ or } 1.98$	
2b	$\log_3 y$	
	$\frac{\log_3 y}{\log_3 9} - 2 = \log_3 y$	
[$\frac{1}{2}\log_3 y - 2 = \log_3 y$	
ļ	1	·
	$\frac{1}{2}\log_3 y = -2$	ĺ
	$\frac{1}{2}\log_3 y - 2 = \log_3 y$ $\frac{1}{2}\log_3 y = -2$ $\log_3 y = -4$ $\therefore y = \frac{1}{81}$	
	1	•
*	$\therefore y = \frac{1}{2}$	
	0.1	

3a	$2f(x-5) = 2x^2 - 16x + 32$
	$f(x-5) = x^2 - 8x + 16$
	$=(x-4)^2$
	$=(x+1-5)^2$
	$\therefore f(x) = (x+1)^2$
	OR
	Reverse 2 nd transformation:
ļ	$y = (2x^2 - 16x + 32) \div 2$
	$=x^2-8x+16$
	Reverse 1 st transformation:
	$y = (x+5)^2 - 8(x+5) + 16$
	y - (x + 3) - 8(x + 3) + 10 = $x^2 + 2x + 1$
	$= x + 2x + 1$ $= (x+1)^2$
	=(x+1)
	Αν /
3bi	
	14 / y=x-3
,	y=ln(x-1)
	\ \frac{1}{0} \frac{1}{2} \frac{1}{3} \frac{1}{5} \text{15}
	1 1-3
	T1
3bii	1 ,
	$x = \frac{1}{e^{3-x}} + 1$
	3
	$x-1=e^{x-3}$
1	
j	$\ln(x-1) = x-3$
1	$\ln(x-1) = x-3$ Draw the line $y = x-3$
	Draw the line $y = x - 3$
	Draw the line $y = x - 3$ \therefore number of solutions is 2
4	Draw the line $y = x - 3$
4	Draw the line $y = x - 3$ \therefore number of solutions is 2 $27^{x} \div 3^{y} = 9 \implies 3^{3x} \div 3^{y} = 3^{2} \implies 3x - y = 2(1)$
4	Draw the line $y = x - 3$ \therefore number of solutions is 2 $27^{x} \div 3^{y} = 9 \implies 3^{3x} \div 3^{y} = 3^{2} \implies 3x - y = 2(1)$ $2^{2x} \times 4^{1-y} = 64 \implies 2^{2x} \times 2^{2-2y} = 2^{6} \implies x - y = 2(2) \text{ (or } 2x - 2y = 4)$
4	Draw the line $y = x - 3$ \therefore number of solutions is 2 $27^{x} \div 3^{y} = 9 \implies 3^{3x} \div 3^{y} = 3^{2} \implies 3x - y = 2(1)$
	Draw the line $y = x - 3$ \therefore number of solutions is 2 $27^{x} \div 3^{y} = 9 \implies 3^{3x} \div 3^{y} = 3^{2} \implies 3x - y = 2(1)$ $2^{2x} \times 4^{1-y} = 64 \implies 2^{2x} \times 2^{2-2y} = 2^{6} \implies x - y = 2(2) \text{ (or } 2x - 2y = 4)$ $(1) - (2): x = 0; y = -2$
4 5i	Draw the line $y = x - 3$ \therefore number of solutions is 2 $27^{x} \div 3^{y} = 9 \implies 3^{3x} \div 3^{y} = 3^{2} \implies 3x - y = 2(1)$ $2^{2x} \times 4^{1-y} = 64 \implies 2^{2x} \times 2^{2-2y} = 2^{6} \implies x - y = 2(2) \text{ (or } 2x - 2y = 4)$
	Draw the line $y = x - 3$ \therefore number of solutions is 2 $27^{x} \div 3^{y} = 9 \Rightarrow 3^{3x} \div 3^{y} = 3^{2} \Rightarrow 3x - y = 2(1)$ $2^{2x} \times 4^{1-y} = 64 \Rightarrow 2^{2x} \times 2^{2-2y} = 2^{6} \Rightarrow x - y = 2(2) \text{ (or } 2x - 2y = 4)$ $(1) - (2): x = 0; y = -2$ 84000
	Draw the line $y = x - 3$ \therefore number of solutions is 2 $27^{x} \div 3^{y} = 9 \Rightarrow 3^{3x} \div 3^{y} = 3^{2} \Rightarrow 3x - y = 2(1)$ $2^{2x} \times 4^{1-y} = 64 \Rightarrow 2^{2x} \times 2^{2-2y} = 2^{6} \Rightarrow x - y = 2(2) \text{ (or } 2x - 2y = 4)$ $(1) - (2): x = 0; y = -2$ 84000
	Draw the line $y = x - 3$ \therefore number of solutions is 2 $27^{x} \div 3^{y} = 9 \Rightarrow 3^{3x} \div 3^{y} = 3^{2} \Rightarrow 3x - y = 2(1)$ $2^{2x} \times 4^{1-y} = 64 \Rightarrow 2^{2x} \times 2^{2-2y} = 2^{6} \Rightarrow x - y = 2(2) \text{ (or } 2x - 2y = 4)$ $(1) - (2): x = 0; y = -2$ 84000 $84000e^{3k} = 42000$ $e^{3k} = \frac{1}{2}$
5i	Draw the line $y = x - 3$ \therefore number of solutions is 2 $27^{x} \div 3^{y} = 9 \Rightarrow 3^{3x} \div 3^{y} = 3^{2} \Rightarrow 3x - y = 2(1)$ $2^{2x} \times 4^{1-y} = 64 \Rightarrow 2^{2x} \times 2^{2-2y} = 2^{6} \Rightarrow x - y = 2(2) \text{ (or } 2x - 2y = 4)$ $(1) - (2): x = 0; y = -2$ 84000
5i	Draw the line $y = x - 3$ \therefore number of solutions is 2 $27^{x} \div 3^{y} = 9 \implies 3^{3x} \div 3^{y} = 3^{2} \implies 3x - y = 2(1)$ $2^{2x} \times 4^{1-y} = 64 \implies 2^{2x} \times 2^{2-2y} = 2^{6} \implies x - y = 2(2) \text{ (or } 2x - 2y = 4)$ $(1) - (2): x = 0; y = -2$ 84000 $84000e^{3k} = 42000$ $e^{3k} = \frac{1}{2}$ $3k = \ln \frac{1}{2}$
	Draw the line $y = x - 3$ \therefore number of solutions is 2 $27^{x} \div 3^{y} = 9 \Rightarrow 3^{3x} \div 3^{y} = 3^{2} \Rightarrow 3x - y = 2(1)$ $2^{2x} \times 4^{1-y} = 64 \Rightarrow 2^{2x} \times 2^{2-2y} = 2^{6} \Rightarrow x - y = 2(2) \text{ (or } 2x - 2y = 4)$ $(1) - (2): x = 0; y = -2$ 84000 $84000e^{3k} = 42000$ $e^{3k} = \frac{1}{2}$
5i	Draw the line $y = x - 3$ \therefore number of solutions is 2 $27^{x} \div 3^{y} = 9 \implies 3^{3x} \div 3^{y} = 3^{2} \implies 3x - y = 2(1)$ $2^{2x} \times 4^{1-y} = 64 \implies 2^{2x} \times 2^{2-2y} = 2^{6} \implies x - y = 2(2) \text{ (or } 2x - 2y = 4)$ $(1) - (2): x = 0; y = -2$ 84000 $84000e^{3k} = 42000$ $e^{3k} = \frac{1}{2}$ $3k = \ln \frac{1}{2}$

	ki o
	$e^{kt} = 0.2$
•	$kt = \ln 0.2$
	$\therefore t = 6.97 \text{ (3sf)}$
6a	$(x+4)^2 + (x+p)^2 = 8$
	$2x^2 + (8+2p)x + (8+p^2) = 0$
	Eqn has real roots → Discriminant ≥ 0
	$(8+2p)^2-4(2)(8+p^2)\geq 0$
	$-4p^2 + 32p \ge 0$
	$n^2 - 8n < 0$ OR $-n^2 + 8n > 0$
	$p(p-8) \le 0 \qquad p(8-p) \ge 0$
	$p(p-8) \le 0$ $p(8-p) \ge 0$ $0 \le p \le 8$
	•
	$x^2 - 4x + c$
	$= x^{2} - 4x + 4 + c - 4$ = $(x-2)^{2} + (c-4)$
	c-4=3
	$\therefore c=7$
7a	
	· · · · · · · · · · · · · · · · · · ·
	$(-2,3) \qquad y = h(x) \qquad y = x$
	(-1,2)
	$y = h^{-1}(x)$
	0 1 2 x
·	(2,-1)
	\((3,-2)\)
	1
7b	A V
	a T
	y = g(2x) - 1 (1.5, 2)
,	(-0.5, 1)
	-1 0 x
	$\bigvee \bigvee y = g(x)$
	(1,-1)
	(2, ~2)
	I
8i	Max = 0, Min = -2
8ii	
011	4π

0:::	1.		·	
8iii	1.			
8iv	$\sin\left(\frac{x}{z}\right) = -1$			
	2)			
	$x = 3\pi$			
	$\frac{x}{2} = \frac{3\pi}{2}$			
	$\therefore x = 3\pi$			
e,	x=3k			
	1 γ		·	
8v				
	2			-
				•
	/			
	1.5			
	/			
į		\	\	
	1 1/			
	 		\	
ł				
	†0.5			
	1 1			x
	1 1			~
1	0 0.5π π	1.5π	2π	 }
	0 0.5π π	1.5π	2π	→ ,733,
	0 0.5π π	1.5π	2π	···
9ai		1.5π	2π	
9ai ii	tan θ	1.5π	2π	
ii	tan θ – sin θ	1.5π	2π	
l	tan θ	1.5π	2π	
ii iii	$\tan \theta$ $-\sin \theta$ $\sin \theta$	1.5π	2π	
ii	$\tan \theta$ $-\sin \theta$ $\sin \theta$ $\tan x + 2(1 + \tan^2 x) - 5 = 0$	1.5π	2π	
ii iii	$\tan \theta$ $-\sin \theta$ $\sin \theta$ $\tan x + 2(1 + \tan^2 x) - 5 = 0$ $2 \tan^2 x + \tan x - 3 = 0$	1.5π	2π	
ii iii	$\tan \theta = \sin \theta$ $\sin \theta$ $\tan x + 2(1 + \tan^2 x) - 5 = 0$ $2 \tan^2 x + \tan x - 3 = 0$ $(\tan x - 1)(2 \tan x + 3) = 0$	1.5π	2π	
ii iii	$\tan \theta = \sin \theta$ $\sin \theta$ $\tan x + 2(1 + \tan^2 x) - 5 = 0$ $2 \tan^2 x + \tan x - 3 = 0$ $(\tan x - 1)(2 \tan x + 3) = 0$	1.5π	2π	
ii iii	$\tan \theta$ $-\sin \theta$ $\sin \theta$ $\tan x + 2(1 + \tan^2 x) - 5 = 0$ $2 \tan^2 x + \tan x - 3 = 0$	1.5π	2π	
ii iii	$\tan \theta - \sin \theta \\ \sin \theta$ $\tan x + 2 (1 + \tan^2 x) - 5 = 0$ $2 \tan^2 x + \tan x - 3 = 0$ $(\tan x - 1)(2 \tan x + 3) = 0$ $\tan x = 1 \text{ or } \tan x = -\frac{3}{2}$	1.5π	2π	
ii iii	$\tan \theta - \sin \theta \\ \sin \theta$ $\tan x + 2 (1 + \tan^2 x) - 5 = 0$ $2 \tan^2 x + \tan x - 3 = 0$ $(\tan x - 1)(2 \tan x + 3) = 0$ $\tan x = 1 \text{ or } \tan x = -\frac{3}{2}$	1.5π	2π	
ii iii	$\tan \theta - \sin \theta \\ \sin \theta$ $\tan x + 2 (1 + \tan^2 x) - 5 = 0$ $2 \tan^2 x + \tan x - 3 = 0$ $(\tan x - 1)(2 \tan x + 3) = 0$ $\tan x = 1 \text{ or } \tan x = -\frac{3}{2}$ $\text{Ref. } \angle = \frac{\pi}{4} \text{ or } 0.98279$	1.5π	2π	
ii iii	$\tan \theta - \sin \theta \\ \sin \theta$ $\tan x + 2 (1 + \tan^2 x) - 5 = 0$ $2 \tan^2 x + \tan x - 3 = 0$ $(\tan x - 1)(2 \tan x + 3) = 0$ $\tan x = 1 \text{ or } \tan x = -\frac{3}{2}$ $\text{Ref. } \angle = \frac{\pi}{4} \text{ or } 0.98279$	1.5π	2π	
ii iii	$\tan \theta - \sin \theta \\ \sin \theta$ $\tan x + 2 (1 + \tan^2 x) - 5 = 0$ $2 \tan^2 x + \tan x - 3 = 0$ $(\tan x - 1)(2 \tan x + 3) = 0$ $\tan x = 1 \text{ or } \tan x = -\frac{3}{2}$	1.5π	2π	
ii iii 9b	$\tan \theta - \sin \theta \\ \sin \theta$ $\tan x + 2 (1 + \tan^2 x) - 5 = 0$ $2 \tan^2 x + \tan x - 3 = 0$ $(\tan x - 1)(2 \tan x + 3) = 0$ $\tan x = 1 \text{ or } \tan x = -\frac{3}{2}$ $\text{Ref. } \angle = \frac{\pi}{4} \text{ or } 0.98279$ $\therefore x = \frac{\pi}{4}, \frac{5\pi}{4}, 2.15 \text{ or } 5.30$	1.5π	2π	
ii iii	$\tan \theta - \sin \theta \\ \sin \theta$ $\tan x + 2 (1 + \tan^2 x) - 5 = 0$ $2 \tan^2 x + \tan x - 3 = 0$ $(\tan x - 1)(2 \tan x + 3) = 0$ $\tan x = 1 \text{ or } \tan x = -\frac{3}{2}$ $\text{Ref. } \angle = \frac{\pi}{4} \text{ or } 0.98279$ $\therefore x = \frac{\pi}{4}, \frac{5\pi}{4}, 2.15 \text{ or } 5.30$ $\text{THS} = \frac{1}{4} - \cos A$	1.5π	2π	
ii iii 9b	$\tan \theta - \sin \theta \\ \sin \theta$ $\tan x + 2 (1 + \tan^2 x) - 5 = 0$ $2 \tan^2 x + \tan x - 3 = 0$ $(\tan x - 1)(2 \tan x + 3) = 0$ $\tan x = 1 \text{ or } \tan x = -\frac{3}{2}$ $\text{Ref. } \angle = \frac{\pi}{4} \text{ or } 0.98279$ $\therefore x = \frac{\pi}{4}, \frac{5\pi}{4}, 2.15 \text{ or } 5.30$	1.5π	2π	
ii iii 9b	$\tan \theta - \sin \theta \\ \sin \theta$ $\tan x + 2 (1 + \tan^2 x) - 5 = 0$ $2 \tan^2 x + \tan x - 3 = 0$ $(\tan x - 1)(2 \tan x + 3) = 0$ $\tan x = 1 \text{ or } \tan x = -\frac{3}{2}$ $\text{Ref. } \angle = \frac{\pi}{4} \text{ or } 0.98279$ $\therefore x = \frac{\pi}{4}, \frac{5\pi}{4}, 2.15 \text{ or } 5.30$ $LHS = \frac{1}{\sin A} - \frac{\cos A}{\sin A}$	1.5π	2π	
ii iii 9b	$\tan \theta - \sin \theta \\ \sin \theta$ $\tan x + 2 (1 + \tan^2 x) - 5 = 0$ $2 \tan^2 x + \tan x - 3 = 0$ $(\tan x - 1)(2 \tan x + 3) = 0$ $\tan x = 1 \text{ or } \tan x = -\frac{3}{2}$ $\text{Ref. } \angle = \frac{\pi}{4} \text{ or } 0.98279$ $\therefore x = \frac{\pi}{4}, \frac{5\pi}{4}, 2.15 \text{ or } 5.30$ $\text{THS} = \frac{1}{4} - \cos A$	1.5π	2π	

1	$= \frac{1 - \cos A}{\sin A} \times \frac{1 + \cos A}{1 + \cos A}$	
	$=\frac{1-\cos^2 A}{\sin A(1+\cos A)}$	ļ
	$\sin A(1+\cos A)$	
	$\sin^2 A$	١
	$=\frac{\sin^2 A}{\sin A(1+\cos A)}$	
		}
	$=\frac{\sin A}{1+\cos A}$	
		J
10b;	= RHS (shown) A in 2^{nd} quadrant, hyp = 5	
TODI		
-	$\cos A = -\frac{4}{5}$	
	5	
101 **	D: Old	
10bii	$B \text{ in } 3^{\text{rd}} \text{ quadrant, opp} = 12$	
	$\tan B = \frac{12}{5}$	
	5	
407 ***		
10biii	$\cos ecA \sec B = \frac{1}{\sin A} \times \frac{1}{\cos B}$	
	$=\left(\frac{5}{3}\right)\left(-\frac{13}{5}\right)$	
	(3)(5)	
	13 1	
i .	or - 1	
	$=-\frac{13}{3}$ or $-4\frac{1}{3}$	
	$=-\frac{1}{3}$ or $-4\frac{1}{3}$	
11i	2	
11i	$\frac{3}{2x+1} = x$	
11i	$\frac{3}{2x+1} = x$ $2x^2 + x = 3$	
11i	$\frac{3}{2x+1} = x$	
11i	$\frac{3}{2x+1} = x$ $2x^{2} + x = 3$ $2x^{2} + x - 3 = 0$ $(2x+3)(x-1) = 0$	
11i	$\frac{3}{2x+1} = x$ $2x^{2} + x = 3$ $2x^{2} + x - 3 = 0$ $(2x+3)(x-1) = 0$	
11i	$\frac{3}{2x+1} = x$ $2x^2 + x = 3$ $2x^2 + x - 3 = 0$	
11i	$\frac{3}{2x+1} = x$ $2x^{2} + x = 3$ $2x^{2} + x - 3 = 0$ $(2x+3)(x-1) = 0$ $\therefore x = -\frac{3}{2} \text{ or } 1$	
	$\frac{3}{2x+1} = x$ $2x^{2} + x = 3$ $2x^{2} + x - 3 = 0$ $(2x+3)(x-1) = 0$ $\therefore x = -\frac{3}{2} \text{ or } 1$	
	$\frac{3}{2x+1} = x$ $2x^{2} + x = 3$ $2x^{2} + x - 3 = 0$ $(2x+3)(x-1) = 0$ $\therefore x = -\frac{3}{2} \text{ or } 1$	
	$\frac{3}{2x+1} = x$ $2x^{2} + x = 3$ $2x^{2} + x - 3 = 0$ $(2x+3)(x-1) = 0$ $\therefore x = -\frac{3}{2} \text{ or } 1$ $f^{2}(x) = f(\frac{3}{2x+1})$	
	$\frac{3}{2x+1} = x$ $2x^{2} + x = 3$ $2x^{2} + x - 3 = 0$ $(2x+3)(x-1) = 0$ $\therefore x = -\frac{3}{2} \text{ or } 1$ $f^{2}(x) = f(\frac{3}{2x+1})$	
	$\frac{3}{2x+1} = x$ $2x^{2} + x = 3$ $2x^{2} + x - 3 = 0$ $(2x+3)(x-1) = 0$ $\therefore x = -\frac{3}{2} \text{ or } 1$ $f^{2}(x) = f(\frac{3}{2x+1})$	
	$\frac{3}{2x+1} = x$ $2x^{2} + x = 3$ $2x^{2} + x - 3 = 0$ $(2x+3)(x-1) = 0$ $\therefore x = -\frac{3}{2} \text{ or } 1$ $f^{2}(x) = f(\frac{3}{2x+1})$ $= \frac{3}{2(\frac{3}{2x+1}) + 1}$	
	$\frac{3}{2x+1} = x$ $2x^{2} + x = 3$ $2x^{2} + x - 3 = 0$ $(2x+3)(x-1) = 0$ $\therefore x = -\frac{3}{2} \text{ or } 1$ $f^{2}(x) = f(\frac{3}{2x+1})$ $= \frac{3}{2(\frac{3}{2x+1}) + 1}$	
	$\frac{3}{2x+1} = x$ $2x^{2} + x = 3$ $2x^{2} + x - 3 = 0$ $(2x+3)(x-1) = 0$ $\therefore x = -\frac{3}{2} \text{ or } 1$ $f^{2}(x) = f(\frac{3}{2x+1})$ $= \frac{3}{2(\frac{3}{2x+1})+1}$ $= \frac{3}{6+2x+1}$	
	$\frac{3}{2x+1} = x$ $2x^2 + x = 3$ $2x^2 + x - 3 = 0$ $(2x+3)(x-1) = 0$ $\therefore x = -\frac{3}{2} \text{ or } 1$ $f^2(x) = f(\frac{3}{2x+1})$ $= \frac{3}{2(\frac{3}{2x+1}) + 1}$ $= \frac{3}{6+2x+1}$ $= \frac{3}{2x+1}$	
	$\frac{3}{2x+1} = x$ $2x^2 + x = 3$ $2x^2 + x - 3 = 0$ $(2x+3)(x-1) = 0$ $\therefore x = -\frac{3}{2} \text{ or } 1$ $f^2(x) = f(\frac{3}{2x+1})$ $= \frac{3}{2(\frac{3}{2x+1}) + 1}$ $= \frac{3}{6+2x+1}$ $= \frac{3}{2x+1}$	
	$\frac{3}{2x+1} = x$ $2x^2 + x = 3$ $2x^2 + x - 3 = 0$ $(2x+3)(x-1) = 0$ $\therefore x = -\frac{3}{2} \text{ or } 1$ $f^2(x) = f(\frac{3}{2x+1})$ $= \frac{3}{2(\frac{3}{2x+1}) + 1}$ $= \frac{3}{\frac{6+2x+1}{2x+1}}$ $= \frac{3(2x+1)}{2x+7} \text{ or } \frac{6x+3}{2x+7}$	
	$\frac{3}{2x+1} = x$ $2x^2 + x = 3$ $2x^2 + x - 3 = 0$ $(2x+3)(x-1) = 0$ $\therefore x = -\frac{3}{2} \text{ or } 1$ $f^2(x) = f(\frac{3}{2x+1})$ $= \frac{3}{2(\frac{3}{2x+1}) + 1}$ $= \frac{3}{\frac{6+2x+1}{2x+1}}$ $= \frac{3(2x+1)}{2x+7} \text{ or } \frac{6x+3}{2x+7}$	
	$\frac{3}{2x+1} = x$ $2x^2 + x = 3$ $2x^2 + x - 3 = 0$ $(2x+3)(x-1) = 0$ $\therefore x = -\frac{3}{2} \text{ or } 1$ $f^2(x) = f(\frac{3}{2x+1})$ $= \frac{3}{2(\frac{3}{2x+1}) + 1}$ $= \frac{3}{6+2x+1}$ $= \frac{3}{2x+1}$	

$= \left(x - \frac{3}{2}\right)^2 + 1 - \frac{9}{4}$ $\left(3\right)^2 = 5$				
$=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}$				
Turning point is $\left(1\frac{1}{2}, -1\frac{1}{4}\right)$	Turning point is $\left(1\frac{1}{2}, -1\frac{1}{4}\right)$			
The range of g is $g(x) \ge -1\frac{1}{4}$	The range of g is $g(x) \ge -1\frac{1}{4}$			
11iv Max. $k = 1\frac{1}{2}$	*			
Let $y = g(x)$ Let $y = g(x)$ Let g^{-1}	$^{1}(x)=y$			
$y = \left(x - \frac{3}{2}\right)^2 - \frac{5}{4}$ $y = x^2 - 3x + 1$ $x = g(x)$	·)			
1 1 2 4	$\left(-\frac{3}{2}\right)^2 - \frac{5}{4}$			
	$\left(\frac{3}{2}\right)^2 = x + \frac{5}{4}$			
$x = \pm \sqrt{y + \frac{5}{4} + \frac{3}{2}}$ $x = \frac{3 \pm \sqrt{5 + 4y}}{2}$ $y - \frac{3}{2}$	$=\pm\sqrt{x+\frac{5}{4}}$			
$g^{-1}(x) = \pm \sqrt{x + \frac{5}{4} + \frac{3}{2}}$ $g^{-1}(x) = \frac{3 \pm \sqrt{5 + 4x}}{2}$ $y = \pm \frac{3 \pm \sqrt{5 + 4x}}{2}$	$\sqrt{x+\frac{5}{4}+\frac{3}{2}}$			
Since $g^{-1}(x) \leq 1\frac{1}{2}$,				
$g^{-1}: x \mapsto -\sqrt{x+\frac{5}{4}+\frac{3}{2}}, x \ge -\frac{5}{4}$				
or $\frac{3-\sqrt{5+4x}}{2}$				
Bonus qn	Pomus on			
$\frac{1}{\log_{ab} b} - \frac{1}{\log_{ab} a} = \log_b ab - \log_a ab$				
$= (\log_a b + 1) - (\log_a b + 1)$				
$= \log_b a - \log_a b$				
$=\frac{1}{\log h} - \frac{1}{\log a}$	$=\frac{1}{\log_a b} - \frac{1}{\log_b a}$			
$= \sqrt{\left(\frac{1}{\log_a b} - \frac{1}{\log_b a}\right)^2}$				
$= \sqrt{\left(\frac{1}{\log_a b} + \frac{1}{\log_b a}\right)^2 - 4\left(\frac{1}{\log_a b}\right)\left(\frac{1}{\log_b a}\right)}$ $= \sqrt{293 - 4}$				
= \(\frac{1293 - 4}{293 - 4}\) = 17				