

FAIRFIELD METHODIST SCHOOL (SECONDARY)

END-OF-YEAR EXAMINATION 2015 SECONDARY 2 EXPRESS

MATHEMATICS

Paper 1

Date: 07 October 2015 Duration: 1 hour 30 minutes

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 60.

For Examiner's Use			
Paper 1	/ 60		
Paper 2	. / 60		
Total	%		

Setter: Miss Germaine J Peter

This question paper consists of <u>15</u> printed pages including the cover page.

Answer all the questions.

1 Arrange the following numbers in ascending order.

$$\frac{1}{3}$$

40%

$$\sqrt[3]{-8}$$

 $\frac{2}{7}$

Answer, [1

2 Estimate the value of $\frac{11.835 \times 6.051}{\sqrt{17}}$, without the use of a calculator.

Answer [2]

ď

3 The length of each side of a square, of length x cm, is increased by 20%. Find the percentage increase in the area of the square.

4	(a)	Express 1008 as a product of its prime factors, giving your answer in index notation.
	(b)	Answer (a)
green of green of green of		
•.		
, saj		Answer (b)[1]
	(c)	Given that $\frac{1350}{k}$ is a square number, write down the smallest possible integer
		value of k.

Š

244	Name:			· · · · · · · · · · · · · · · · · · ·	()	Class:	
	5	the squ It is gi	orce of attraction, F nuare of the distance, x iven that when the magnified an equation conn	centimetres, b gnets are 4 cer	etween then	m.	inversely proportional orce is 3 newtons.	to
			-,					
					Answer	(a)		[1]
		(b)	Find the force when the	ne magnets are	e 2 centimet	res apart		
				A	Inswer (b) .	•••••	newtons	[1]
		(c)	When the magnets ar		_	t, the for	ce is 1.25 newtons. W	rite

ž

The diagram shows a right-angled triangle in a circle, with centre O. 6

Given that the diameter of the circle is 14 cm, find the length of AB.

A closed cylindrical container has a radius of 6.8 cm and a volume of 1500 cm³. [Take π to be 3.142]

Show that the height of the cylindrical container is 10.3 cm. (a)

Answer (a)

[2]

ţ

Find the surface area of the cylindrical container. (b)

8 The diagram below shows a point Q with coordinates (2, r).

(i) Find the length of OQ.

ķ

(ii) Find the value of r.

9 Simplify the following expressions.

(a)
$$\frac{3a^2}{7hc} \div \frac{9a}{14h}$$

Answer (a)[2]

(b) $\frac{2x}{x^2-25}-\frac{1}{x-5}$

Answer (b)[3]

ķ

				-
248	Namo:	(1	Class:
	Name:	. ()	Class:

Petrol costs x cents per litre. John intends to take a road trip during the holidays. Find an expression for the number of litres of petrol that can be bought for y dollars.

11 A sum of money is divided between Alice, Betty and Charlie in the ratio 2:3:4 respectively. If, instead, this money had been divided equally between them, Alice would have received an extra \$20.

What was the total sum of money given to Alice, Betty and Charlie?

Ì

ķ

9

12 The graph below shows the lines -x+2y=2 and 2x+2y=5.

(a) State the solution of the simultaneous equations -x+2y=2 and 2x+2y=5.

Answer (a)
$$x = \dots y = \dots [1]$$

- (b) On the same grid above, draw and label clearly the line x = 3. [1]
- (c) Find the area of the polygon enclosed by the 3 lines, -x+2y=2, 2x+2y=5 and x=3. Leave your answer in square units.

Answer (c) units² [1]

13 In the figure, ABC and DBE are similar triangles, where $\angle ACB = \angle DEB$.

Find

(a) the length of AC,

Answer (a)cm [2]

ď

(b) the length of CD.

- 14 Factorise fully each of the following expressions completely.
 - (a) $3p^2 3pq 5ap + 5aq$

Answer (a)[2]

(b) $6x^2 + 14x - 12$

Answer (b)[2]

- 15 A bag contains 10 red marbles, 5 blue marbles and 3 yellow marbles.
 - (a) Find the probability that the marble is red.

Answer (a)[1]

(b) How many more blue marbles must be placed in the bag so that the probability of choosing a blue marble would be $\frac{1}{2}$?

Answer (b)blue marbles [1]

ķ

252	Name:			(
	Maine.			1

Solve the equation $\frac{5}{y-3} + \frac{10}{3(3-y)} = 3.$

16

Class:

17	Solve the	following	simultaneous	equations
1/	POLAC MIC	lonowing	Simultancous	equations.

$$4a+15b=15$$

 $7a-30b=15$

18	ne:	
	10 girls in a Mathematics test.	
	Boys	Girls
	4 2 0	5 8 9
	9 5 1 1	6 4 7 8
	7 5	7 1 3 5 6
	Boys 4 2 0 9 5 1 1 7 5	8 0
	Key (Boys): 2 5 means 52	Key (Girls): 5 8 means 5
	From the data above, find (a) (i) the mode of the boys' marks,	••
		Answer (a)(i)marks
	(ii) the median of the girls' marks,	
		nswer (a)(ii)marks
	(iii) the mean of the boys' marks.	(7)
	(
	· A	nswer (a)(iii)marks
	(b) Given that the mean of the girls' mar or girls performed better in the test.	cs is 69.1, explain briefly whether the

Construct the perpendicular bisector of BC. [1] 19 (a) Construct the bisector of $\angle ABC$. [1] **(b)** The point D is such that $\angle BCD = 130^{\circ}$ and AD = 7.5 cm. (c) Find the two possible positions of D and label them D_1 and D_2 . [2] It is given that the two bisectors in (a) and (b) meet at P. [2] (d) Complete the statement below. The point P is equidistant from the lines and and equidistant from the points and

Answer (a), (b), (c)

~ End of Paper ~

Š

255

256

Name:			(

Class:

ķ

Fairfield Methodist School (Secondary) Sec 2 Express 2015 EOY Examination Mathematics Paper 1 Answer Key

Answer a=3

61 marks

69.5 marks

64.4 marks

BA, BC; B,C

Refer to M.S Refer to M.S Refer to M.S

No.	Answer	No.
1	$\sqrt[3]{-8}$, $\frac{2}{7}$, 0.3, $\frac{1}{3}$, 40%	17
	$\frac{1}{7}$, $\frac{1}{7}$, 0.3, $\frac{1}{3}$, 40%	
2	18	18ai
3	44%	18aii
4a	$1008 = 2^4 \times 3^2 \times 7$	18aiii
4b	$LCM = 2^4 \times 3^3 \times 5^2 \times 7$	19a
4c	k=6	19b
5a	$F = \frac{48}{x^2}$ $F = 12 \text{ newtons}$	19c
5h	X	104
5b	F – 12 newtons	19d
5c	F = 5 newtons	
6	AB = 9.90	
7a	10.3	
7b	732 cm ² or 731 cm ²	
8i	OQ = 4	
8ii	h = 3.46	
9a	2 <i>a</i>	
	<u>3c</u>	
9b	1	
	$\overline{x+5}$	
10	100 <i>y</i>	
	x	
11	\$180	
12a	x=1, y=1.5	
12c	3 units ²	
13a	AC = 18 cm	
13b	CD = 17 cm	
14a	(3p-5a)(p-q)	
14b	2(3x-2)(x+3)	
15a	5	
	$\frac{5}{9}$	1.
151	9	
15b	8 more	_
16	$3\frac{5}{9}$	

ţ

Sec 2 Express 2015 EOY Examination Mathematics Paper 1 Marking Scheme

No.	Working	Allocation of marks
1	$\sqrt[3]{-8}$, $\frac{2}{7}$, 0.3, $\frac{1}{3}$, 40%	[B1]
	$\sqrt[3-8]{\frac{7}{7}}, 0.3, \frac{3}{3}, 40\%$	no mark if answer is not
		according to question
2	11.835×6.051	
	$\sqrt{17}$	
ne die	$\approx \frac{12 \times 6}{\sqrt{16}}$	[M1]
enter Alex Transfer	$\sqrt{16}$	[MI] ~
	$=\frac{72}{4}$	
. 47	1	
2.5	=18	[A1]
3	Percentage increase = $\frac{(1.2x)^2 - x^2}{x^2} \times 100$	[M1]
*	Percentage increase $=\frac{x^2}{x^2}$	5443
or the second second	= 44%	[A1]
4a	$1008 = 2^4 \times 3^2 \times 7$	[B1]
4b	$LCM = 2^4 \times 3^3 \times 5^2 \times 7$	[B1]
4c	$k=2\times3=6$	[B1]
5a	$F = \frac{k}{x^2}$	
 	$\int_{0}^{\infty} x^{2}$	
	$3 = \frac{k}{3}$	
	42	
	$k = 3 \times 16$	
1	$3 = \frac{k}{4^2}$ $k = 3 \times 16$ $F = \frac{48}{4}$	
	$F = \frac{48}{x^2}$ $F = \frac{48}{2^2}$	[B1]
5b	48	
	$F = \frac{1}{2^2}$	No F.T. mark
	E 12	[B1]
5c	1.25 = $\frac{k}{x^2}$ When k = 48, $F = \frac{k}{(\frac{x}{2})^2} = \frac{4k}{x^2}$ $F = \frac{48}{(\frac{x}{2})^2}$ $F = \frac{48}{(\frac{x}{2})^2}$	
* .	$1.25 = \frac{48}{x^2}$	53443
**	$F = \frac{k}{k} = \frac{4k}{k}$	[M1]
	$(x^2)^2 x^2 = 48$	
	$\left(\frac{x}{2}\right)^2$	
	2	
	$ \begin{vmatrix} 1.25 = \frac{\kappa}{x^2} \\ F = \frac{k}{(\frac{x}{2})^2} = \frac{4k}{x^2} \\ F = \frac{48}{(\frac{x}{2})^2} \\ F = 4\left(\frac{48}{x^2}\right) $	
	$\therefore F = 1.25 \times 4$ $F = 1.25 \times 4$	FA43
	= 5	[A1]

	D D (I		
6	By Pythagoras' Theorem,		[M1]
	$AB = \sqrt{(\frac{14}{2})^2 + (\frac{14}{2})^2}$		[M1]
	1 2 2	to 20f) (ainea langth , 0)	[A1]
7a	$AB = 7\sqrt{2} \text{ or } AB = 9.90 \text{ (t)}$ $\pi r^2 h = 1500$	to 3SI) (Since length >U)	[M1]
/α			[MI]
	$h = \frac{1500}{3.142 \times 6.8^2}$		
	1		·
	=10.3244		
	=10.3 (to 3sf)		[A1]
7b	$2\pi r^2 + 2\pi rh$	If $h = 10.3$ used,	
	$=2(3.142)(6.8^2)$	$2\pi r^2 + 2\pi rh$	fM13
	+2(3.142)(6.8)(10.3244)	$=2(3.142)(6.8^2)$	[M1]
	=731.746	+2(3.142)(6.8)(10.3)	
		= 731.285	
	=732 cm ² (to 3sf)	=731 cm ² (to 3sf)	[A1]
8i			[M1]
	$\cos 60^\circ = \frac{2}{OQ}$	$\sin 30^\circ = \frac{2}{OQ}$	[]
	OQ = 4	$\therefore OQ = 4$	
	or $OQ = 4.00(3sf)$	or $OQ = 4.00(3sf)$	
8ii		1102 1100(23)	[A1]
OII	$r = \sqrt{4^2 - 2^2}$	· ·	[M1]
1	$r=2\sqrt{3}$	$\tan 60^\circ = \frac{r}{2}$	
	0 2464	$\therefore r = 3.464$	
	Or 3.464 = 3.46 (to 3 sf)		
	- 3.40 (10 3 31)	= 3.46 (to 3 sf)	[A1]
9a	$3a^2$ $9a$		
	$\frac{3u}{7bc} \div \frac{3u}{14b}$		
			[M1] for reciprocal of
	$=\frac{3a^2}{7bc}\times\frac{14b}{9a}$	•	term after division sign
	$=\frac{2a}{a}$	***	
	$=\frac{1}{3c}$		[A1]
9b	2x 1		
	$\frac{1}{x^2-25} - \frac{1}{x-5}$		
			[M1] for making 2 nd
	$=\frac{2x-(x+5)}{x^2-25}$	•	term have the same
	1		denominator
	$=\frac{x-5}{x^2-25}$		[M1] for change of sign
			[z] for change of sign
	a=2		[A1]
10	1-1-11		[D41]
10	y dollars = 100y cents		[M1]
1			1

ż

Š

	100 <i>y</i>	[A1]
	Amount of petrol = $\frac{x}{x}$	
11	Total number of units = 2+3+4 = 9 If equally didved among A, B and C, each will get 3 units	[M1]
	Therefore total sum of money $= (3-2) \times 9 \times \20 $= \$180$	[A1]
12a	x = 1, y = 1.5	[B1]
12 b	Line drawn at $x = 3$	[B1]
12c	Area = $\frac{1}{2} \times 6 \times 2$	[B1]
13a	$= 6 \text{ units}^2$ $\frac{12}{8} = \frac{AC}{12}$	[M1]
	$AC = \frac{144}{8} = 18cm$	[A1]
13b	$\frac{CB}{6} = \frac{12}{8}$	[M1]
	$CB = 9$ $\therefore CD = 8 + 9 = 17cm$	[A1]
14a	$3p^{2}-3pq-5ap+5aq$ $=3p(p-q)-5a(p-q)$ $=(3p-5a)(p-q)$	[M1] [A1]
14b	$\begin{vmatrix} 6x^2 + 14x - 12 \\ = 2(3x^2 + 7x - 6) \\ = 2(3x - 2)(x + 3) \end{vmatrix}$	[B1] for factor 2 [B1] for factors in brackets
15a	Total no. of balls = 18 Probability that ball is red = $\frac{10}{18} = \frac{5}{9}$	[B1]
15b	Let additional blue marbles be x. $\frac{5+x}{18+x} = \frac{1}{2}$ $18+x=10+2x$ $x=8$	[B1]

16	$\frac{5}{y-3} + \frac{10}{3(3-y)} = 3$	
1	y-3 + 3(3-y)	53.43.6 3 6 .
		[M1] for change of sign
	$\frac{5}{y-3} - \frac{10}{3(y-3)} = 3$	
	y 5 50 5)	
	5	[M1] for multiplying
	$\frac{5}{3(y-3)} = 3$	denominator to both
	5(y-3) 5=9y-27	sides and correct
		expansion
	$y = \frac{32}{9}$ $= 3\frac{5}{9}$	**
	9	
- [5	
	$=\frac{3}{9}$	
		[A1] marks awarded if
		improper fraction
17	4a+15b=15	
	7a - 30b = 15	
	$(1) \times 2$: 8a + 30b = 30(3)	
	(2) - (2)	[M1] for elimination or
	(2) + (3): 15a = 45	substitution method
	15a = 45	UM DO VALUE DE LA CONTRACTION DELA CONTRACTION DE LA CONTRACTION DEL CONTRACTION DE LA CONTRACTION DE
	a=3	
	Sub $(a = 3)$ into (1):	[A1]
	4(3)+15b=15	
	15b = 15 - 12	
	$b=\frac{1}{5}$	[A-1]
18ai	Modal marks = 61 marks	[A1] [B1]
18aii	68+71	[DI]
1.00	Median current = $\frac{66+71}{2}$	
	= 69.5 marks	[B1]
18aiii	Mean of boys' marks	
	50+52+54+2(61)+65+69+75+77+80	
	$=\frac{10}{10}$	
	= 64.4 <i>marks</i>	[B1]
18b	Sample Answer:	
-	The girls preformed better.	*definitely is girls
•	Because they attained a higher mean score as	
	compared to the boys	[B1]
19d	BA, BC;	[B1]
1	B,C	[B1]

ğ

Qn 19a, b, c

ţ

*

Ì

FAIRFIELD METHODIST SCHOOL (SECONDARY)

END-OF-YEAR EXAMINATION 2015 SECONDARY 2 EXPRESS

MATHEMATICS

Paper 2

Date: 08 October 2015

Duration: 1 hour 30 minutes

Candidates answer on Question Paper.

Additional Material: Graph paper (1 sheet)

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 60.

At the end of the examination, fasten all your work securely together.

	For Examiner's Use				
,	Paper 2	/ 60			

Setter: Miss Michelle Tan

This question paper consists of 16 printed pages including the cover page.

		•		
264	Name :	()	Sec 2_

Answer all the questions.

1. The ratio of the length and breadth of a rectangle is 5:3. Given that the perimeter of the rectangle is 32 cm, find the length of the rectangle.

Answer cm [1]

•

2. Mdm Teo bought 48 apples, 72 oranges and 96 pears. If she wants each type of fruit to be distributed equally among a certain number of fruit baskets, what is the greatest number of fruit baskets that can be prepared?

3.	If y is directly proportional to x^3 and the difference in the values of y when
	x = 1 and $x = 2$ is 35, find the value of y when $x = -3$.

4. (a) Calculate the sum of the interior angles of a decagon.

فالمنينه.

Answer (a)...... [1]

(b) Seven of the interior angles of a decagon are 165° each. The rest of the angles are $2x^{\circ}$, $(2x+15)^{\circ}$ and $(x-30)^{\circ}$. Find the value of the largest interior angle.

Answer (b)..... [2]

ţ

5	Nam	ie : _		()	·	Sec 2
	5.	Jenn	ifer sold x cupcakes at 60	cents each and	l 32 cookies at	20 cents each d	uring a
		fund	raising activity in school. A	At the end of the	he day, she rec	eived at least \$1	68.
		(a)	Write down an inequality i	in x to represe	ent the informa	tion given abov	e.
		,				~	- ·
				·	Answer (a)	•••••••	[1]
		(b)	Solve the inequality forme	ed in (a) .			
					Answer (b)	•••••	[1]
		(c)	Hence, find the minimum	number of cu	pcakes sold.		

6. Study the number pattern below.

	C_1	C_2	C_3	C ₄
R_1	2	4	8	64
R_2	3	5	15	225
R_3	4	6	24	576
R_4	5	7	35	1225
R_5	6	8	48	2304
:	:	:	:	i i
R_n	n+1	n+3	575	330625
R_{n+1}	w	x	y	Z

(a) Write down an expression for w, x and y in terms of n.

Answer (u)	<i>w</i> =	
	<i>x</i> =	
	<i>y</i> =	[1]

(b) (i) Form an equation in terms of n.

(b) (ii) Show that your answer in (b)(i) can be simplified to $n^2 + 4n - 572 = 0$.

Answer
$$(b)(ii)$$
 [1]

(c) Explain why the number 15000 would not appear in the column C_4 .

Answer (c) .	 	 •,	
• • • • • • • • • • • • • • • • • • • •		•	

(d) Write down an expression for z in terms of y.

Ì

7. (a) Given that $\sqrt[3]{\frac{1-x}{y}} = p$, express x in terms of p and y.

Answer (a).....[2]

(b) Hence, find the value of x when p = -1 and y = 6.

Answer (b)......[1]

ď

8. It is given that $a^2 + b^2 = 548$ and 2ab = 352 and a > b, find the value of $a^2 - b^2$ where a and b are positive integers.

Sec 2__

9. Expand and simplify the following expressions.

(a)
$$-3x(2x-5)$$

Answer (a)......[1]

(b)
$$7(x-4)-3(2x+4)$$

Answer (b)......[2]

10. (a) Factorise 3k(4-h)-(h-4).

n in Seri

Answer (a)..... [1]

(b) Hence, simplify $\frac{3k(4-h)-(h-4)}{16-h^2}$

Answer (b)......[2]

Ļ

270	Name :					(
-----	--------	--	--	--	--	---

Sec 2_

11. Solve the following equations.

(a)
$$x-(2x-8)=28+4x$$

(b)
$$(m-20)^2=144$$

- 12. A map of Sentosa Island in Singapore is drawn to a scale of 1:50000.
 - (a) The distance on the map between the Merlion Park and Tanjong Beach is3.6 cm. Calculate, in kilometers, the actual distance between these two places.

Answer (a).....km [1]

(b) Sentosa Island has an actual area of 5 km². Calculate in square centimeters, the area of Sentosa Island on the map.

Ì

13. The figure shows a vertical monument AB. Caine is standing on a platform 5.7 m away, at point C.

It is given that the angle of elevation from C to the top of the monument is 20° and the angle of elevation from the foot of the monument to C is 28° . Find the height of the monument.

Ì

14. The table shows the number of hours, h, spent by a group of 20 students on the computer in a week.

5	2	14	8	17	0	11	3	9	20
3	10	12	22	14	20	18	20	12	24

(a) Complete the frequency table for the data.

No. of hours .	Frequency
0 ≤ <i>h</i> < 5	4
5 ≤ <i>h</i> < 10	
10 ≤ h < 15	
15 ≤ h < 20	
20 ≤ h < 25	

(b) Draw a histogram to illustrate the data in (a).

[2]

ķ

[1]

Frequency

274	Name :	()		Sec 2
-----	--------	---	---	--	-------

14. (c) Calculate an estimated mean for the number of hours the group of students spent on the computer in a week.

Answer (c)......[2]

3

15. A metal ornament is made up of a pyramid with a rectangular cuboid as its base as shown in the diagram below.

- (a) It is given that the height of the pyramid is 12 cm and the dimensions of the cuboid is 15 cm by 9 cm by 4 cm.
 - (i) Find the volume of the pyramid.

(ii) Show that the volume of the metal ornament is 1080 cm³.

Answer
$$(a)(ii)$$
 [1]

Ì

- 15. (b) The metal ornament was melted and recast into smaller solid cones with a base circumference of 12 cm and a slant height of 5 cm. Take $\pi = 3.142$.
 - (i) Find the volume of each cone.

(ii) Hence, find the maximum number of cones that can be formed.

ķ

- 15. (c) An engineer then cut off the top of the cone with a vertical height of 2 cm and a diameter of 1 cm. He intends to paint the remaining of the ornament after the removal of the top of the cone.
 - (i) Find the curved surface area of the remaining ornament after the removal of the top of the cone.

(ii) Find the total surface area of the ornament to be painted.

Š

16. Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation $y = x^2 - 8x + 7$. The table below shows the corresponding values of x and y for the equation.

X	0 .	2	3	4	5	6
у	7	-5	-8	р	-8	-5

(a) Calculate the value of p.

[1]

ţ

- (b) Taking 2 cm to represent 1 unit on the x-axis and 1 cm to represent 1 unit on [3] the y-axis, draw the graph of $y = x^2 8x + 7$ for $0 \le x \le 6$.
- (c) Using your graph, solve $x^2 8x + 7 = -4$. [1]
- (d) State the equation of the line of symmetry of the graph. [1]

~ End of Paper ~

²⁸⁰ Name :	()	Sec 2

16c 16d Accept x = 1.7 to 1.8 x = 4

Ĭ

1.	Length of rectangle = $\frac{32}{16} \times 5 = 10 \text{ cm}$ [B1]
2.	$48 = 2^4 \times 3$
	$72 = 2^3 \times 3^2$
	$96 = 2^{5} \times 3$
	$HCF = 2^3 \times 3 [M1]$
	= 24 [A1]
3.	$y = kx^3$
	When well wek When well well
	When $x = 1$, $y = k$ When $x = 2$, $y = 8k$
	8k - k = 35
	7k = 35
	k=5 [M1]
	When $x = -3$,
	$y = 5(-3)^3 = -135$ [A1]
4a.	
4b.	$(10-2) \times 180^{\circ} = 1440^{\circ}$ [B1] 7(165) + 2x + (2x+15) + (x-30) = 1440
40.	5x = 300
	x = 60 [M1]
	Larges interior angle = 165° [A1]
5a.	(0 , 22(20) > 1(200 FP41 , 22(0 2) > 1(2 FP41
5b.	$60x + 32(20) \ge 16800$ [B1] or $0.6x + 32(0.2) \ge 168$ [B1]
50.	$\begin{array}{c} 60x + 32(20) \ge 16800 \\ 60x \ge 16160 \end{array}$
	$x \ge 269\frac{1}{3}$ (to 5sf) B1
5c.	270 [B1]
6a.	w=n+2, x=n+4, y=(n+2)(n+4)
6bi.	(n+1)(n+3) = 575 [B1]
6bii.	(n+1)(n+3) = 575
	$n^2 + 4n + 3 = 575$
	$n^2 + 4n - 572 = 0$ (shown) [B1]
6c.	The numbers in C ₄ are all perfect squares. Since 15000 is not a perfect square, it
	will not appear in C_4 . [B1]
6d.	$z=y^2 [B1]$
L	

§ .

11b.	(002 144
110.	$(m-20)^2=144$
	m-20=12 or $m-20=-12$ [M1]
	m = 32 or m = 8 [A1]
	Or
	$(m-20)^2=144$
	$m^2 - 2(m)(20) + 20^2 = 144$
	$m^2 - 40m + 256 = 0$
1.40.00	(m-8)(m-32)=0 [M1 for factorisation]
	m-8=0 or $m-32=0$
	m = 32 or m = 8 [A1]
12a.	Map Actual 1 cm rep. 50000 cm
	3.6 cm rep. 180000 cm = 1.8 km [B1]
12b.	Actual Map
ľ	50000 cm rep. 1 cm 0.5km rep. 1 cm
<u>!</u>	$0.25 \text{km}^2 \text{ rep. 1 cm}^2 $ [M1]
	5km^2 rep. 20 cm^2 [A1]
13.	$\angle ACX = 28^{\circ}$ (alt. angles)
e	$\tan 28^{\circ} = \frac{BX}{5.7}$
	BX = 3.0307 m (to 5 sf) [M1]
æ	$\tan 20^{\circ} = \frac{AX}{5.7}$
	AX = 2.0746 m (to 5 sf) [M1]
	Height of monument = $3.0307 + 2.0746 = 5.11 \text{ m}$ (to 3sf) [A1]
	Or
	$\angle XBC = 62^{\circ}$
5.3.	$\tan 62^{\circ} = \frac{5.7}{BX}$
	BX = 3.0307 m (to 5 sf) [M1]
n garage	$\tan 70^{\circ} = \frac{5.7}{AX}$
nek ² .	$\frac{\tan 70}{AX}$
	AX = 2.0746 m (to 5 sf) [M1]
	Height of monument = $3.0307 + 2.0746 = 5.11 \text{ m}$ (to 3sf) [A1]

-				
		No. of hours	Frequency	
		$0 \le h < 5$	4	
		$5 \le h < 10$	3	
		10 ≤ h < 15	6	
		15 ≤ <i>h</i> < 20	2	
	20 ≤ h < 25		5	
	B1	for all correct]		
	Fre	quency		
		† †		
	6 -			
	5 -			
	4 -			
	3 -			سلمشما واستوادها
	2 -			
	1 -			
	•			
	C	5	10 15 20 25 No. of hours (h)	
			s of bars drawn correctly [No FT m	

È

14c.	Estimated mean = $\frac{(2.5 \times 4) + (7.5 \times 3) + (12.5 \times 6) + (17.5 \times 2) + (22.5 \times 5)}{[M1]}$
	20
	$=\frac{255}{20}$
	=12.75 [A1]
15ai.	Volume of pyramid = $\frac{1}{3} \times 15 \times 9 \times 12$ [M1]
	$= 540 \text{ cm}^3 [\mathbf{A1}]$
15aii.	Volume of ornament = $540 + (15 \times 9 \times 4) = 1080 \text{ cm}^3 \text{ (shown)} $ [B1]

15bi.	Radius of base = $\frac{12}{3.142} \div 2 = 1.9096$ cm [M1 for radius or height]
	Height of cone = $\sqrt{5^2 - 1.9096^2}$ = 4.6210 cm
- A 182	Volume of cone = $\frac{1}{3} \times 3.142 \times 1.9096^2 \times 4.6210$ [M1]
	$= 17.648 \text{ cm}^3 \text{ (to 5 sf)}$
4	$= 17.6 \text{ cm}^3 \text{ (to 3 sf) } [A.1]$
15bii.	Max. no. of cones = $1080 \div 17.648 = 61.196 = 61$ (nearest whole number) [B1]
15ci.	Slant height of removed part = $\sqrt{2^2 + 0.5^2}$
1	$=\sqrt{4.25}$
7 % 7 % 7 %	= 2.0616 (to 5sf) Remaining curved surface area
-	$= (3.142 \times 1.9606 \times 5) - (3.142 \times 0.5 \times 2.0616) $ [M1]
 	$= 27.562 \text{ cm}^2 \text{ (to 5sf)}$
	$= 27.6 \text{ cm}^2 \text{ (to 3sf) } [A1]$
	Or .
	Remaining curved surface area
	$= (3.142 \times \left[\frac{12}{3.142} \div 2 \right] \times 5) - (3.142 \times 0.5 \times \sqrt{4.25}) \text{ [M1]}$
	$= 26.761 \text{ cm}^2 \text{ (to 5sf)}$
1 m	$= 26.8 \text{ cm}^2 \text{ (to 3sf) } [A1]$
1.31	
17-38-51 * 17-78-51 17-78-51	
100 pm	

ķ