	米	MISSINU	1 1	
NAME:		_()		CLASS:

FAIRFIELD METHODIST SCHOOL (SECONDARY)

END-OF-YEAR EXAMINATION 2014 SECONDARY 1 EXPRESS

MATHEMATICS

Paper 2

Date: 8 October 2014

Duration: 1 hour 30 minutes

Candidates answer on Question Paper.

Additional Material:

Graph paper (1 sheet)

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid/tape.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 60.

At the end of the examination, fasten all your work securely together.

For Examiner's Use		
Paper 2	/ 60	

Setter: Miss Germaine and Miss Lee CP

This question paper consists of 17 printed pages including the cover page.

Nan	ne:	() Class:
		Answer all the questions.
1	The o	original price of a box of chocolate is \$13.80. During the Great Singapore Sale,
	there	was a 20% discount. Calculate the sale price of the chocolate.
· · .		
		Answer \$[2]
2		con on a particular day, the temperature at the foot of a mountain was 12° C and emperature at the peak of the mountain was -8° C.
	(a)	Calculate the difference between the temperature at the peak of the mountain
		and the temperature at the foot of the mountain.
		Answer (a)°C [1]
	(b)	The height of the mountain is 3200 m. Given that the temperature changed with
		height at a constant rate, calculate the height from the foot of the mountain at
		which the temperature was 0°C.
		·

Nar	ne: _			*			_ ()				Cla	ıss:			
3	2460	douglies. I	hnuts Each	to mal	German ke as m the same number	any se	ets of oer of	items sausa	as p	ossibl ns, ch	e for eese t	distril wists	oution	to nee	dy	
				٠.												
						í										
													٠			
				•												

(b) How many doughnuts does each set of items have?

Answer (a) sets

Name:			(

Class: _____

4 Factorise each of the following expressions completely.

(a)
$$6p^2q + 9pq^2r + 12pqr$$

Answer (a)

[2

(b) cx-2cy-3dx+6dy

Answer (b)

[2]

5 Express $\frac{y-3}{4} - \frac{y+5}{3}$ as a single fraction in its lowest term.

Answer

[3]

Name: _	()	Class:
	 ٠,	,	O1000

6 Mr Tan decides to have a garden planted in his backyard. His backyard is in the shape of a trapezium. His garden will occupy the area of the backyard except for the portion, a semi-circular piece (shaded part).

(a) Find the area of the garden he wishes to plant in his backyard. (Take π to be 3.142.)

(b) Find the perimeter of the garden. (Take π to be 3.142.)

Answer (b) m

Nan	ne:	() Class:	
7	In a of gi	class, there are 29 students. There are 7 more boys than girls. Let g be the number rls.	
	(i)	Form an expression in g to represent the number of boys.	
· · · · · · · · · · · · · · · · · · ·			
		Answer (i)	[1]
	(ii)	Form an equation in g and solve the equation.	

Answer (ii)
$$g = \dots$$
 [2]

(iii) Hence, find the number of boys in the class.

Answer (iii) boys [1]

		4 - 4 - 4 - 4						
Namo	ə:			()		Class:	-
:	of 4. chec	1 km at 0825. He kpoint. He stopp	ran at ar	n average est for 20	speed of 8.5	km/h for 1.7k	tal running distance of the before reaching a point. He continued by till he reached his	l
	(a)		t which	he left th	e checkpoin	t to continue	his run to his fina	l
		destination.		•				
					Answer (a)			. [2]

(b) Find the novice marathon runner's average speed, in m/min, of the whole

journey.

Name:(
--------	--

Class: _____

9 The following diagram shows the first three figures of a sequence of triangles.

Figure 1 (1 Triangle)

Figure 2 (4 Triangles)

Figure 3 (9 Triangles)

(a) Draw Figure 4.

Answer(a)

[1]

9

Figure	Number of triangles	Total
1	1 -	1
2	1+3	4
3	1+3+5	9
4		
5		\boldsymbol{x}
•		:
:	:	:
n	1+3+5++ <u>y</u>	z

(b) Complete the table above and thus find the value of x.

Answer (b)
$$x =$$
 [1]

(c) Write an expression for y and z in terms of n, in its simplest form, for the nth term.

Answer (c)
$$y = \dots$$
 [2]

(d) Figure P is made up of 1089 triangles . Find the value of P.

Answer (d)
$$P =$$
 [1]

The diagram shows a wooden object that John has carved for his Design and Technology project. It is a cube with a hollow circular core. The cube measures 8 m in length and the circular core has a diameter of 3m.

3 m

Figure 1

Figure 2

(a) Refer to Figure 1. Find the cross-sectional area of the object John has carved.

Answer (a) m^2 [2]

(b) With reference to Figure 2, calculate the volume of the object.

Answer (b) $\dots m^3$ [2]

Name:	(,

Class:

Show that the curved surface area of the hollow circular core is 24π cm². 10 Answer

[1]

John intends to paint his wooden object. Find the total surface area of the (d) wooden object that needs to be painted.

Answer (d) m^2

12

Name:	•	Class:
ivame:	ι.) Class

Maria and her extended family of four decided to celebrate her daughter's 24th birthday at Prawn & Co. However, on their way home, she realised that the receipt was not printed properly and the end part of the receipt was blank. Thus she was unable to determine the total cost of the meal.

550000000000000000000000000000000000000			
PRAWN& CO			
Tampines 1			
10 Tampines Central,	Singapore		
Tel : 6260 018	3		
GST Reg No : 1998 -	02488H		
1 Counter	2005 Pod 6		
	Cover: 1		
03 Aug 14 20: 42: 38	Tbl:5/1		
- Dine In -			
2 Seafood PL FOR 2 @83.90	83.90		
1 Seafood Spaghetti 17.95			
1 Prawn Fettuccini Chili CR	16.95		
1 Black Coffee	3.00		
4 Cold Water	0.00		
1 (\$2.50) Soup of the day	2.50		
Subtotal			
G.S.T (7 %)			
Svc charge (10 %)			

(a) Calculate the Service Charge to be paid by Maria.

Answer (a) \$..... [1]

(b) Calculate the G.S.T to be paid by Maria.

Answer (b) \$.....[2]

The following pie chart illustrates the racial distribution of the residents of a newly 12 established housing estate.

Chinese Residents Indian Residents $6x^{\circ}$ 150° $5x^{\circ}$ Others Malay Residents

What percentage of the residents are Chinese?

Answer (a) % [1]

(i) Given that there are 35 residents who are 'others', how many Indian **(b)** residents are there in this housing estate?

Answer (b)(i) Indian residents

Name:		()	Class:	· ·
12 (b) (ii)			ay residents as there are 'oth	ers',
	how many non-Chine	ese residents are th	ere in the entire estate?	
		•	-	
	 			÷
	•			
		1 2		

Answer (b)(ii) non- Chinese residents [1]

13 The diagram shows part of a regular polygon with n sides. Each interior angle of this

polygon is 156°.

C
D
F

Find

(a) the value of n,

Answer (a)

 $n = \dots$ [1]

(b) $\angle ACD$,

Answer (b)

∠*ACD* =.....° [2]

(c) ∠ADC.

Answer (c)

∠*ADC* =°

[1]

Name:	(,

Class: _____

14 In a trapezium, PQRS, PS is parallel to QR. PS = SR, angle $SPR = 34^{\circ}$ and angle $RPQ = 84^{\circ}$.

Find

(a) x,

Answer (a)
$$x = \dots$$
 [1]

(b) y,

Answer (b)
$$y =$$
 [1]

(c) z.

Answer (c)
$$z = \dots$$
 [2]

Name:	(Class:

15 Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation 2y = x + 4. Some corresponding values of x and y are given in the table below.

x	-5	-1	0	- 1	3
у	-0.5	1.5	p	2.5	3.5

(a) Calculate the value of p.

[1]

(b) Using a scale of 2 cm to represent 1 unit on each axis, draw a horizontal x-axis [3] for $-5 \le x \le 3$.

On your axes, plot the points given in the table and join them with a smooth straight line.

- (c) Use your graph to find
 - (i) the value of x when y = 1,

[1]

(ii) the value of y when x = 2.

[1]

~ End of Paper ~

Fairfield Methodist School (Secondary) Secondary 1 Express Mathematics

Paper 2 End-of-Year Examination 2014

No	Working	MarksAllocation
1.	100%\$13.80 80%\$13.80 \frac{13.80}{100} \times 80 = \$11.04 (2 d.p.)	M1 – Mark awarded for correct correlation
2(a)	$12 - (-8) = 20^{\circ}C$	B1 – Mark awarded for change of sign and answer
2(b)	$3200 \div 20 = 160$ $160 \times 12 = 1920m$	M1 A1
3(a)	Finding H.C.F of 480, 720, 2460. 10 480, 720, 2460 6 48, 72, 245 8, 12, 41	B1 - Mark awarded for H.C.F working and answer
3(b)	No. of sets = $10 \times 6 = 60$ $480 \div 60 = 8$ $720 \div 600 = 12$	A1
	$2460 \div 600 = 41$ No. of doughnuts: 41	A1
4(a)	$6p^{2}q + 9pq^{2}r + 12pqr$ $= 3pq(2p) + 3pq(3qr) + 3pq(4r)$ $= 3pq(2p + 3qr + 4r)$	M1 - Mark awarded for collecting and removing common factor A1
4(b)	cx-3dx-2cy+6dy $=x(c-3d)-2y(c-3d)$ $=(x-2y)(c-3d)$	M1 - Mark awarded for identifying and removing common factor
5	$\frac{y-3}{4} - \frac{y+5}{3}$ $= \frac{3(y-3)}{12} - \frac{4(y+5)}{12}$ $= \frac{3y-9-4y-20}{12}$ $= \frac{-y-29}{12}$	M1 – Mark awarded for changing to common denominator M1 – Mark awarded for change of sign in 2 nd bracket and simplification A1

$6(a) \begin{array}{c} \text{Area of garden} \\ = \text{Area of trapezium} - \text{Area of semi-circle} \\ = \frac{1}{2}(20+40)(25) - \frac{1}{2}(10^2)(3.142) \\ = 750-157.1 \\ = 592.9 \\ = 593 \text{ m}^2 \{ 3 \text{ s.f.} \} \\ \hline 6(b) \begin{array}{c} \text{Perimeter of garden} \\ = \frac{1}{2} \text{circumference of semi-circle} + 30 + 40 + 27 \\ = \frac{1}{2}(20)(3.142) + 97 \\ = 128.42 \\ = 128 \text{ m } (3 \text{ s.f.}) \\ \hline 7(i) \text{Number of boys} = g + 7 \\ 2g + 7 = 29 \\ 2g = 22 \\ \therefore g = 11 \\ \hline 7(iii) \begin{array}{c} \text{Number of boys} = g + 7 \\ = 11 + 7 = 18 \\ \hline 8(a) 8.5km - 1hr \\ \vdots 0.825 + 12 \text{ mins} + 20 \text{ mins} = 08 57 \text{ or } 8 57 \text{ am} \\ \hline 8(b) \text{Time taken for second part of the journey} \\ \end{array} \begin{array}{c} \text{M1 - Mark awarded for correct formula used and correct interpolation} \\ \text{M1 - Mark awarded for trapezium} \\ \text{A1} \\ \text{M1 - Mark awarded for correct identification of circle and correct identification of the edges to be added} \\ \text{A1} \\ \text{M1 - Mark awarded for correct formation of equation and correct simplification} \\ \text{A1} \\ \text{A1} \\ \text{M1 - Mark awarded for correct formation of equation and correct simplification} \\ \text{A1} \\ \text{M1 - Mark awarded for correct formation of equation and correct simplification} \\ \text{A1} \\ \text{M1 - Mark awarded for correct formation of equation and correct simplification} \\ \text{A1} \\ \text{M1 - Mark awarded for correct formation of equation and correct correlation} \\ \text{M1 - Mark awarded for correct correlation} \\ \text{M2 - Mark awarded for correct formation of equation and correct correlation} \\ \text{M3 - Mark awarded for correct correlation} \\ M3 - Mark awarded for correct formation of equation and cor$	
$=\frac{1}{2}(20+40)(25)-\frac{1}{2}(10^2)(3.142)$ $=750-157.1$ $=592.9$ $=593 \text{ m}^2 (3 \text{ s.f.})$ $6(b) \text{Perimeter of garden}$ $=\frac{1}{2}\text{circumference of semi-circle} + 30 + 40 + 27$ $=\frac{1}{2}(20)(3.142) + 97$ $=128.42$ $=128 \text{ m } (3 \text{ s.f.})$ $7(i) \text{Number of boys} = g+7$ $7(ii) g+g+7=29$ $2g=22$ $\therefore g=11$ $7(iii) \text{Number of boys} = g+7$ $=11+7=18$ $8(a) 8.5km-1hr$ $1.7km-\frac{1}{5}hr=12 \text{ min}$ $\therefore 08 25 + 12 \text{ mins} + 20 \text{ mins} = 08 57 \text{ or } 8 57 \text{ am}$ $M1 - \text{Mark awarded for correct formula used and correct substituted for trapezium}$ $A1$ $M1 - \text{Mark awarded for correct identifying half the diameter of circle and correct identification of other edges to be added}$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$	1
$= \frac{1}{2}(20+40)(25) - \frac{1}{2}(10^{\circ})(3.142)$ $= 750-157.1$ $= 592.9$ $= 593 \text{ m}^2 \{ 3 \text{ s.f.} \}$ 6(b) Perimeter of garden $= \frac{1}{2} \text{ circumference of semi-circle} + 30 + 40 + 27$ $= \frac{1}{2}(20)(3.142) + 97$ $= 128.42$ $= 128 \text{ m } (3 \text{ s.f.})$ 7(i) Number of boys = $g+7$ 7(ii) $g+g+7=29$ $2g+7=29$ $2g=22$ $\therefore g=11$ 7(iii) Number of boys = $g+7$ $= 11+7=18$ 8(a) $8.5km-1hr$ $1.7km-\frac{1}{5}hr=12 \text{ min}$ $\therefore 08 25 + 12 \text{ mins} + 20 \text{ mins} = 08 57 \text{ or } 8 57 \text{ am}$ formula used and correct number substituted for trapezium A1 M1 - Mark awarded for identifying half the diameter of circle and correct identification of circle and correct identification of the edges to be added A1 A1 A1 M1 - Mark awarded for correct formation of equation and correct simplification A1 A1 M1 - Mark awarded for correct formation of equation and correct simplification A1	- 1
$= 592.9$ $= 593 \text{ m}^2 (3 \text{ s.f.})$ $6(b) \text{Perimeter of garden}$ $= \frac{1}{2} \text{circumference of semi - circle} + 30 + 40 + 27$ $= \frac{1}{2} (20)(3.142) + 97$ $= 128.42$ $= 128 \text{ m} (3 \text{ s.f.})$ $7(i) \text{Number of boys} = g + 7$ $7(ii) g + g + 7 = 29$ $2g + 7 = 29$ $2g = 22$ $\therefore g = 11$ $7(iii) \text{Number of boys} = g + 7$ $= 11 + 7 = 18$ $8(a) 8.5km - 1hr$ $1.7km - \frac{1}{5}hr = 12 \text{ min}$ $\therefore 08 25 + 12 \text{ mins} + 20 \text{ mins} = 08 57 \text{ or } 8 57 \text{ am}$ $A1$ $M1 - \text{Mark awarded for correct formation of equation and correct simplification}$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$	s
$= 593 \text{ m}^2 (3 \text{ s.f.})$ $6(b) \text{Perimeter of garden}$ $= \frac{1}{2} \text{ circumference of semi - circle} + 30 + 40 + 27$ $= \frac{1}{2} (20)(3.142) + 97$ $= 128.42$ $= 128 \text{ m} (3 \text{ s.f.})$ $7(i) \text{Number of boys} = g + 7$ $7(ii) g + g + 7 = 29$ $2g + 7 = 29$ $2g + 22$ $\therefore g = 11$ $7(iii) \text{Number of boys} = g + 7$ $= 11 + 7 = 18$ $8(a) 8.5km - 1hr$ $1.7km - \frac{1}{5}hr = 12 \text{ min}$ $\therefore 08 25 + 12 \text{ mins} + 20 \text{ mins} = 08 57 \text{ or } 8 57 \text{ am}$ $M1 - \text{Mark awarded for correct formation of equation and correct simplification}$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$	
6(b) Perimeter of garden $= \frac{1}{2} \text{ circumference of semi - circle} + 30 + 40 + 27$ $= \frac{1}{2} (20)(3.142) + 97$ $= 128.42$ $= 128 \text{ m (3 s.f.)}$ A1 7(i) Number of boys = $g+7$ A1 7(ii) $g+g+7=29$ $2g+7=29$ $2g=22$ $\therefore g=11$ 7(iii) Number of boys = $g+7$ $= 11+7=18$ 8(a) $8.5km-1hr$ $1.7km-\frac{1}{5}hr=12 \min$ $\therefore 08 25 + 12 \min + 20 \min = 08 57 \text{ or } 8 57 \text{ am}$ $M1 - \text{Mark awarded for circle and correct identification of other edges to be added}$ $A1$ A1 A1 A1 A1 A1 A1 A1 A1 A1	
$=\frac{1}{2} \text{ circumference of semi-circle} + 30 + 40 + 27$ $=\frac{1}{2}(20)(3.142) + 97$ $=128.42$ $=128 \text{ m } (3 \text{ s.f.})$ $7(i) \text{Number of boys} = g + 7$ $2g + 7 = 29$ $2g = 22$ $\therefore g = 11$ $7(iii) \text{Number of boys} = g + 7$ $=11 + 7 = 18$ $8(a) 8.5km - 1hr$ $1.7km - \frac{1}{5}hr = 12 \text{ min}$ $\therefore 08 25 + 12 \text{ mins} + 20 \text{ mins} = 08 57 \text{ or } 8 57 \text{ am}$ $M1 - Mark awarded for circle and correct identification of circle and correct identification of the edges to be added and other edges to $	\dashv
identifying half the diameter of circle and correct identification of other edges to be added 12(20)(3.142)+97 128.42 128 m (3 s.f.) 7(i) Number of boys = $g+7$ 7(ii) $g+g+7=29$ $2g+7=29$ $2g=22$ $g+7=29$ $g+11$ 7(iii) Number of boys = $g+7$ 11+7=18 8(a) $8.5km-1hr$ $1.7km-\frac{1}{5}hr=12 \min$ $0.08 25 + 12 \min + 20 \min = 08 57 \text{ or } 8 57 \text{ am}$ identifying half the diameter of circle and correct identification of the edges to be added A1 A1 A1 A1 A1 A1 A1 A1 A1 A	
$=\frac{1}{2}(20)(3.142)+97$ $=128.42$ $=128 \text{ m (3 s.f.)}$ A1 $7(i) \text{Number of boys} = g+7$ $7(ii) g+g+7=29$ $2g+7=29$ $2g=22$ $\therefore g=11$ A1 $7(iii) \text{Number of boys} = g+7$ $=11+7=18$ $8(a) 8.5km-1hr$ $1.7km-\frac{1}{5}hr=12 \text{ min}$ $\therefore 08 25 + 12 \text{ mins} + 20 \text{ mins} = 08 57 \text{ or } 8 57 \text{ am}$ $\text{circle and correct identification of other edges to be added}$ A1 A1 A1 A1 A1 A1 A1 M1 - Mark awarded for correct simplification of equation and	
$= 128.42$ $= 128 \text{ m } (3 \text{ s.f.})$ A1 $7(i) \text{Number of boys} = g+7$ A1 $7(ii) g+g+7=29$ $2g+7=29$ $2g=22$ $\therefore g=11$ A1 $7(iii) \text{Number of boys} = g+7$ $= 11+7=18$ A1 $8(a) 8.5km-1hr$ $1.7km-\frac{1}{5}hr=12 \text{ min}$ $\therefore 08 25 + 12 \text{ mins} + 20 \text{ mins} = 08 57 \text{ or } 8 57 \text{ am}$ A1 A1 A1 M1 - Mark awarded for correct correlation M1 - Mark awarded for correct correlation	of
7(i) Number of boys = $g+7$ 7(ii) $g+g+7=29$ $2g+7=29$ $2g=22$ $g=11$ 7(iii) Number of boys = $g+7$ $g+1+7=18$ 8(a) $8.5km-1hr$ $1.7km-\frac{1}{5}hr=12 \min$ $3.5km-1 + 20 \min = 08 57 \text{ or } 8 57 \text{ am}$ A1 A1 A1 A1 A1 A1 A1 A1 A1 A	
7(ii) $g+g+7=29$ 2g+7=29 2g=22 $\therefore g=11$ 7(iii) Number of boys = $g+7$ = $11+7=18$ 8(a) $8.5km-1hr$ $1.7km-\frac{1}{5}hr=12 \min$ $\therefore 08\ 25+12 \min = 08\ 57 \text{ or } 8\ 57 \text{ am}$ M1 – Mark awarded for correct formation of equation and correct simplification A1 M1 – Mark awarded for correct correlation	
$2g+7=29$ $2g=22$ $g=11$ $7(iii)$ Number of boys = $g+7$ $=11+7=18$ $8(a)$ $8.5km-1hr$ $1.7km-\frac{1}{5}hr=12 \min$ $08 25 + 12 \min = 08 57 \text{ or } 8 57 \text{ am}$ $A1$ formation of equation and correct simplification A1 A1 M1 - Mark awarded for correct correlation	
$2g = 22$ $g = 11$ $7(iii)$ Number of boys = $g + 7$ $= 11 + 7 = 18$ $8(a)$ $8.5km - 1hr$ $1.7km - \frac{1}{5}hr = 12 \min$ $08 25 + 12 \min + 20 \min = 08 57 \text{ or } 8 57 \text{ am}$ $A1$ $M1 - Mark awarded for correct correlation$.,
7(iii) Number of boys = $g+7$ =11+7=18 A1 8(a) 8.5 km -1 km M1 – Mark awarded for correct correlation 1.7 km - $\frac{1}{5}hr$ =12 min \therefore 08 25 + 12 mins + 20 mins = 08 57 or 8 57 am A1	1
= 11+7=18	١
8(a) $8.5km-1hr$ $M1 - Mark$ awarded for correct correlation $1.7km-\frac{1}{5}hr=12 \min$ $\therefore 08\ 25+12\ mins+20\ mins=08\ 57\ or\ 8\ 57\ am$ A1	
1.7 $km - \frac{1}{5}hr = 12 \text{ min}$ $\therefore 08\ 25 + 12 \text{ mins} + 20 \text{ mins} = 08\ 57 \text{ or } 8\ 57 \text{ am}$ A1	
$1.7km - \frac{1}{5}hr = 12 \min$ ∴ 08 25 + 12 mins + 20 mins = 08 57 or 8 57 am A1	
8(b) Time taken for second part of the journey	
i i	
$= \frac{4.1-1.7}{\text{M1 - Mark awarded for use of}}$	
5.6 total distance over total time	ļ
$=\frac{1}{4}h$	
Average speed for whole journey	
= 4.1	
12+20+15	
$=\frac{4100}{47}$	
$=87\frac{11}{47}$	
0r = 87.2 m/min(3s.f.) A1	
9(a) B1	
9(b) $x = 25$ triangles B1	

No		Wor	king	MarksAllocation	
9(b)					
	Figure	Number	of \triangle	Total	_
	1	. 1		1	
	2	1+3		4	
	3	1+3+	5	9	
	4	1+3+5	+ 7	16	
 	5	1+3+5+	7+9	25	
	:	:		:	
	:	:		:	
	n	1+3+5++	· y	Z	B1 – Mark awarded when n ² derived
9(c)	y=2n-1	L		·	B1
	$z=n^2$				B1
9(d)	$P^2 = 1089$				
	$\therefore P = \sqrt{1089} = 33$			A1	
10(a)	Area of the cross section			M1 – Mark awarded for correct	
	$=8^2 - \pi(1.5^2)$			substitution of numbers into	
	= 56.9314			formula	
		(3s.f.) or 56.9 n			A1
10(b)	Method 1		Method		M1 –Mark awarded for correct
	Volume of the wooden Volume of the wooden			identification of formulas to be	
	receptacle = Volume		receptad	sectional area x	used and for correct substitution of values
	i	hollow core	Ht	sectional area x	of values
	$=8^3-\pi(1)$		= 56.931	4 x 8	
	İ		= 455.45		
	=455.45	13 (3 s.f.) or 455	_ 155	n ³ (3 s.f.) or 455	A1
		3.1.7 or 455		= 3.142 is used.)	Ai
10(c)	 	rface area of cyl		3.1 12 15 4504.9	
20(0)	$=2\pi(1.5)$	•			
	$=24\pi$				A1
10(d)		ea of receptacle	to be pai	nted	
20(2)	1	•	•		M1 – Mark awarded for correct
	= Area of 4 squares + 2 cross-sectional areas + curved surface area of hollow core			identification of formulas to be	
	$= 4(8^2) + 2(56.9314) + 2\pi(1.5)(8)$			usedand for correct substitution of	
	1	$13.8628 + 24\pi$			values
	= 445.26	*			,
	$= 445.261$ = 445 m ² (3 s.f.)or445 m ² (if π = 3.142 is used.)			A1	
L	1			 	<u> </u>

11(a) Sub Total: \$124.30 Service Charge: $\frac{10}{100} \times 124.30 = 512.43$ A1 - Mark awarded for correct subtotal and correct sve. charge tabulated	No	Working	MarksAllocation
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11(a)	Sub Total: \$124.30	
$ \begin{array}{c} -512.43 \\ \hline 11(b) \\ \hline 6ST: \\ \hline 7 \\ \hline 100 \\ \hline (12.43+124.30) \\ \hline = \frac{7}{100} \\ \hline (136.73) \\ \hline = \frac{99.5711}{300} \\ \hline 12(a) \\ \hline 12(a) \\ \hline 12(a) \\ \hline 12(b) \\ \hline 360 \\ \hline > 100 \\ \hline 260 \\ \hline > 12(a) \\ \hline 12(b) \\ \hline 12(b) \\ \hline 35 \\ \hline > 6 \\ \hline > 642 \\ \hline 100 \\ \hline > 100 \\ \hline > 12(b) \\ \hline > 12(b) \\ \hline > 130 \\ \hline > $			·
$ \begin{array}{c} -512.43 \\ \hline 11(b) \\ \hline 6ST: \\ \hline 7 \\ \hline 100 \\ \hline (12.43+124.30) \\ \hline = \frac{7}{100} \\ \hline (136.73) \\ \hline = \frac{99.5711}{300} \\ \hline 12(a) \\ \hline 12(a) \\ \hline 12(a) \\ \hline 12(b) \\ \hline 360 \\ \hline > 100 \\ \hline 260 \\ \hline > 12(a) \\ \hline 12(b) \\ \hline 12(b) \\ \hline 35 \\ \hline > 6 \\ \hline > 642 \\ \hline 100 \\ \hline > 100 \\ \hline > 12(b) \\ \hline > 12(b) \\ \hline > 130 \\ \hline > $		$\frac{10}{12430}$	A1 – Mark awarded for correct
11(b) 6SF:		100 124.30	
		= \$12.43	tabulated
	11(b)	GST:	M1 – Mark awarded for
$ = \frac{7}{100} (136.73) \\ = \$9.5711 \\ = \$9.57 (2 d.p.) $ A1 *Mark not awarded if answer not correct to 2 d.p. $ \frac{12(a)}{360} \times 100 = 41\frac{2}{3} \text{ or } 41.7 (3 \text{ s.f.}) \% $ M1- Mark awarded for correct calculation and answer $ \frac{12(bi)}{5} \times 6 = 42 \text{ Indian residents} $ M1 - Mark awarded for working A1 $ \frac{12(bii)}{5} \times 6 = 42 \text{ Indian residents} $ $ \frac{41}{5} \times$		7 (12 43+124 30)	identification of new sub total
		$\frac{100}{100}$	
		7 (126.72)	
		$=\frac{100}{100}(136.73)$	
	•	= \$9.5711	
12(a) $\frac{150}{360} \times 100 = 41\frac{2}{3} \text{ or } 41.7 \text{ (3 s.f.) } \%$ M1- Mark awarded for correct calculation and answer 12(bi) $\frac{35}{5} \times 6 = 42 \text{ Indian residents}$ M1 - Mark awarded for working A1 12(bii) Number of non-Chinese residents = $42 + 35 + 70$ = 147 A1 13(a) Exterior angle = $180^{\circ} - 156^{\circ} = 24^{\circ}$ (angles on a straight line) Number of sides, n = $\frac{360}{24} = 15$ B1 13(b) $\angle BCD = \frac{180^{\circ} - 156^{\circ}}{2} = 12^{\circ}$ (angles in an isosceles triangle) $\angle ACD = 156^{\circ} - 12^{\circ} = 144^{\circ}$ A1 13(c) $\angle ADC = 180^{\circ} - 156^{\circ} = 24^{\circ}$ (interior angles, parallel lines) B1 14(a)		·	A1 *Mark not awarded if answer
12(a) $\frac{150}{360} \times 100 = 41\frac{2}{3}$ or 41.7 (3 s.f.) % M1- Mark awarded for correct calculation and answer 12(bii) $\frac{35}{5} \times 6 = 42$ Indian residents M1 - Mark awarded for working A1 12(bii) Number of non-Chinese residents = $42 + 35 + 70$ = 147 A1 13(a) Exterior angle = $180^{\circ} - 156^{\circ} = 24^{\circ}$ (angles on a straight line) B1 13(b) $\angle BCD = \frac{180^{\circ} - 156^{\circ}}{2} = 12^{\circ}$ (angles in an isosceles triangle) M1 $\angle ACD = 156^{\circ} - 12^{\circ} = 144^{\circ}$ A1 13(c) $\angle ADC = 180^{\circ} - 156^{\circ} = 24^{\circ}$ (interior angles, parallel lines) B1 14(a) $\times = 180 - 34 - 34 = 112$ (angle sum of a triangle) B1 14(b) $y = 32$ (Alternate angles) B1 14(c) W = 180 - 84 - 34 = 62 (angles sum of triangle), where w + z = 360 M1 Z = 360 - 62 = 298 (angles at a point) A1 15(a) p = 2 B1 15(b) Refer to Graph Points and draw a line[P2] Scale and label [B1] If any error, minus 1 mark 15(c)(i) $x = -2$ B1		42.67 (2 d.p.)	i ·
$\frac{360}{360} \times 100 = 41 - \text{ or } 41.7 \text{ (3 s.f.) }\%$ $\frac{360}{360} \times 100 = 41 - \text{ or } 41.7 \text{ (3 s.f.) }\%$ $\frac{360}{360} \times 100 = 41 - \text{ or } 41.7 \text{ (3 s.f.) }\%$ $\frac{360}{360} \times 100 = 41 - \text{ or } 41.7 \text{ (3 s.f.) }\%$ $\frac{360}{360} \times 100 = 41 - \text{ or } 41.7 \text{ (3 s.f.) }\%$ $\frac{360}{360} \times 100 = 41 - \text{ or } 41.7 \text{ (3 s.f.) }\%$ $\frac{360}{360} \times 100 = 41 - \text{ or } 41.7 \text{ (3 s.f.) }\%$ $\frac{360}{360} \times 100 = 41 - \text{ or } 41.7 \text{ (3 s.f.) }\%$ $\frac{360}{360} \times 100 = 41 - \text{ or } 41.7 \text{ (3 s.f.) }\%$ $\frac{360}{360} \times 100 = 41 - \text{ or } 41.7 \text{ (3 s.f.) }\%$ $\frac{360}{360} \times 100 = 41 - \text{ or } 41.7 \text{ (3 s.f.) }\%$ $\frac{360}{360} \times 100 = 100$	12(a)	150 2	1
Calculation and answer Calculation and an	` ,	$\frac{360}{360} \times 100 = 41\frac{1}{3}$ or 41.7 (3 s.f.) %	M1- Mark awarded for correct
$ \frac{-8}{5} + 42 \text{ Indian residents} \\ 5 $		300	calculation and answer
$ \frac{-8}{5} + 42 \text{ Indian residents} \\ 5 $	12(bi)	35	M1 - Mark awarded for working
$ = 42 + 35 + 70 $ $= 147 $ 13(a) Exterior angle = $180^{\circ} - 156^{\circ} = 24^{\circ}$ (angles on a straight line) Number of sides, $n = \frac{360}{24} = 15$ B1 $ \frac{13(b)}{2BCD} = \frac{180^{\circ} - 156^{\circ}}{2} = 12^{\circ}$ (angles in an isosceles triangle) $ \frac{\angle ACD}{2} = 156^{\circ} - 12^{\circ} = 144^{\circ}$ A1 $ \frac{13(c)}{2ADC} = 180^{\circ} - 156^{\circ} = 24^{\circ}$ (interior angles, parallel lines) $ \frac{14(a)}{2ADC} = 180^{\circ} - 34 = 34 = 112$ (angle sum of a triangle) $ \frac{14(b)}{2ADC} = 180^{\circ} - 34 = 34 = 112$ (angles sum of triangle), where $w + z = 360$ $ \frac{14(c)}{2ADC} = 180^{\circ} - 34 = 62$ (angles sum of triangle), where $w + z = 360$ $ \frac{15(a)}{2ADC} = 298$ (angles at a point) $ \frac{15(a)}{2ADC} = 298$ Refer to Graph	, ,	$\frac{3}{5} \times 6 = 42$ Indian residents	
$ = 42 + 35 + 70 $ $= 147 $ 13(a) Exterior angle = $180^{\circ} - 156^{\circ} = 24^{\circ}$ (angles on a straight line) Number of sides, $n = \frac{360}{24} = 15$ B1 $ \frac{13(b)}{2BCD} = \frac{180^{\circ} - 156^{\circ}}{2} = 12^{\circ}$ (angles in an isosceles triangle) $ \frac{\angle ACD}{2} = 156^{\circ} - 12^{\circ} = 144^{\circ}$ A1 $ \frac{13(c)}{2ADC} = 180^{\circ} - 156^{\circ} = 24^{\circ}$ (interior angles, parallel lines) $ \frac{14(a)}{2ADC} = 180^{\circ} - 34 = 34 = 112$ (angle sum of a triangle) $ \frac{14(b)}{2ADC} = 180^{\circ} - 34 = 34 = 112$ (angles sum of triangle), where $w + z = 360$ $ \frac{14(c)}{2ADC} = 180^{\circ} - 34 = 62$ (angles sum of triangle), where $w + z = 360$ $ \frac{15(a)}{2ADC} = 298$ (angles at a point) $ \frac{15(a)}{2ADC} = 298$ Refer to Graph	12(bii)	Number of non-Chinese residents	
13(a) Exterior angle = $180^{\circ} - 156^{\circ} = 24^{\circ}$ (angles on a straight line) Number of sides, $n = \frac{360}{24} = 15$ B1 13(b) $\angle BCD = \frac{180^{\circ} - 156^{\circ}}{2} = 12^{\circ}$ (angles in an isosceles triangle) $\angle ACD = 156^{\circ} - 12^{\circ} = 144^{\circ}$ A1 13(c) $\angle ADC = 180^{\circ} - 156^{\circ} = 24^{\circ}$ (interior angles, parallel lines) 14(a) $x = 180 - 34 - 34 = 112$ (angle sum of a triangle) 14(b) $y = 32$ (Alternate angles) 14(c) $W = 180 - 84 - 34 = 62$ (angles sum of triangle), where $w + z = 360$ $z = 360 - 62 = 298$ (angles at a point) 15(a) $p = 2$ B1 15(b) Refer to Graph Points and draw a line[P2] Scale and label [B1] If any error, minus 1 mark	(,	i	
13(a) Exterior angle = $180^{\circ} - 156^{\circ} = 24^{\circ}$ (angles on a straight line) B1 13(b) $ \angle BCD = \frac{180^{\circ} - 156^{\circ}}{2} = 12^{\circ}$ (angles in an isosceles triangle) M1 $ \angle ACD = 156^{\circ} - 12^{\circ} = 144^{\circ}$ A1 13(c) $ \angle ADC = 180^{\circ} - 156^{\circ} = 24^{\circ}$ (interior angles, parallel lines) B1 14(a) $ x = 180 - 34 - 34 = 112$ (angle sum of a triangle) B1 14(b) $ y = 32$ (Alternate angles) B1 14(c) $ W = 180 - 84 - 34 = 62$ (angles sum of triangle), where $ w + z = 360 $ $ z = 360 - 62 = 298$ (angles at a point) A1 15(a) $ p = 2$ B1 15(b) Refer to Graph Points and draw a line[P2] Scale and label [B1] If any error, minus 1 mark 15(c)(i) $ x = -2$ B1		= =147	A1
Number of sides, $n = \frac{360}{24} = 15$ B1 13(b) $ \angle BCD = \frac{180^{\circ} - 156^{\circ}}{2} = 12^{\circ} \text{ (angles in an isosceles triangle)} $ $ \angle ACD = 156^{\circ} - 12^{\circ} = 144^{\circ} $ A1 13(c) $ \angle ADC = 180^{\circ} - 156^{\circ} = 24^{\circ} \text{ (interior angles, parallel lines)}} $ B1 14(a) $ x = 180 - 34 - 34 = 112 \text{ (angle sum of a triangle)} $ B1 14(b) $ y = 32 \text{ (Alternate angles)} $ B1 14(c) $ W = 180 - 84 - 34 = 62 \text{ (angles sum of triangle), where } w + z = 360 $ $ Z = 360 - 62 = 298 \text{ (angles at a point)} $ A1 15(a) $ p = 2 $ B1 15(b) Refer to Graph Points and draw a line[P2] Scale and label [B1] If any error, minus 1 mark 15(c)(i) $ x = -2 $ B1	13(a)	Exterior angle = $180^{\circ} - 156^{\circ} = 24^{\circ}$ (angles on a	
		1	
		Number of sides, $n = \frac{300}{24} = 15$	B1
isosceles triangle) $\angle ACD = 156^{\circ} - 12^{\circ} = 144^{\circ}$ A1 $13(c) \qquad \angle ADC = 180^{\circ} - 156^{\circ} = 24^{\circ} \text{ (interior angles, parallel lines)}}$ B1 $14(a) \qquad x = 180 - 34 - 34 = 112 \text{ (angle sum of a triangle)}}$ B1 $14(b) \qquad y = 32 \text{ (Alternate angles)}}$ B1 $14(c) \qquad W = 180 - 84 - 34 = 62 \text{ (angles sum of triangle), where } w + z = 360$ $Z = 360 - 62 = 298 \text{ (angles at a point)}}$ A1 $15(a) \qquad p = 2$ B1 $15(b) \qquad \text{Refer to Graph}$ Points and draw a line[P2] Scale and label [B1] If any error, minus 1 mark $15(c)(i) \qquad x = -2$ B1	13(b)		
$ \angle ACD = 156^{\circ} - 12^{\circ} = 144^{\circ} $ $ 13(c) \qquad \angle ADC = 180^{\circ} - 156^{\circ} = 24^{\circ} \text{ (interior angles, parallel lines)} $ $ 14(a) \qquad x = 180 - 34 - 34 = 112 \text{ (angle sum of a triangle)} $ $ 14(b) \qquad y = 32 \text{ (Alternate angles)} $ $ 14(c) \qquad W = 180 - 84 - 34 = 62 \text{ (angles sum of triangle), where } w + z = 360 $ $ z = 360 - 62 = 298 \text{ (angles at a point)} $ $ 15(a) \qquad p = 2 $ $ 15(b) \qquad \text{Refer to Graph} $ $ Points \text{ and draw a line}[P2] $ $ Scale \text{ and label } [B1] $ $ If \text{ any error, minus 1 mark} $ $ 15(c)(i) \qquad x = -2 $		$2BCD = {2}$ = 12 (angles in an	M1
13(c) $\angle ADC = 180^{\circ} - 156^{\circ} = 24^{\circ}$ (interior angles, parallel lines) B1 14(a) $x = 180 - 34 - 34 = 112$ (angle sum of a triangle) B1 14(b) $y = 32$ (Alternate angles) B1 14(c) $W = 180 - 84 - 34 = 62$ (angles sum of triangle), where $w + z = 360$ M1 $z = 360 - 62 = 298$ (angles at a point) A1 15(a) $p = 2$ B1 15(b) Refer to Graph Points and draw a line[P2] Scale and label [B1] If any error, minus 1 mark 15(c)(i) $x = -2$ B1		isosceles triangle)	
		$\angle ACD = 156^{\circ} - 12^{\circ} = 144^{\circ}$	Al
14(a) $x = 180 - 34 - 34 = 112$ (angle sum of a triangle) B1 14(b) $y = 32$ (Alternate angles) B1 14(c) $W = 180 - 84 - 34 = 62$ (angles sum of triangle), where $w + z = 360$ M1 $Z = 360 - 62 = 298$ (angles at a point) A1 15(a) $p = 2$ B1 15(b) Refer to Graph Points and draw a line[P2] Scale and label [B1] If any error, minus 1 mark 15(c)(i) $x = -2$ B1	13(c)	$\angle ADC = 180^{\circ} - 156^{\circ} = 24^{\circ}$ (interior angles,	B1
14(b) y = 32 (Alternate angles) B1 14(c) W = $180 - 84 - 34 = 62$ (angles sum of triangle), where w + z = 360 M1 $z = 360 - 62 = 298$ (angles at a point) A1 15(a) p = 2 B1 15(b) Refer to Graph Points and draw a line[P2] Scale and label [B1] If any error, minus 1 mark 15(c)(i) $x = -2$ B1			
14(c) W = $180 - 84 - 34 = 62$ (angles sum of triangle), where w + z = 360 M1 $2 = 360 - 62 = 298$ (angles at a point) A1 $15(a)$ p = 2 B1 $15(b)$ Refer to Graph Points and draw a line[P2] $3 = 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +$		 	
where $w + z = 360$ $z = 360 - 62 = 298$ (angles at a point) A1 15(a) $p = 2$ B1 15(b) Refer to Graph Points and draw a line[P2] Scale and label [B1] If any error, minus 1 mark 15(c)(i) $x = -2$ B1			
	14(c)	, -	M1
15(a) $p = 2$ B115(b)Refer to GraphPoints and draw a line[P2] Scale and label [B1] If any error, minus 1 mark15(c)(i) $x = -2$ B1			A.1
15(b) Refer to Graph Points and draw a line[P2] Scale and label [B1] If any error, minus 1 mark $15(c)(i) x = -2$ B1	15(0)		
Scale and label [B1] If any error, minus 1 mark 15(c)(i) $x = -2$ B1			
If any error, minus 1 mark $15(c)(i)$ $x = -2$ B1	12(0)	Refer to Graph	
15(c)(i) $x = -2$ B1			· -
	15(c)(i)	r = - 2	
	15(c)(ii)	v=3	B1