

YISHUN SECONDARY SCHOOL

We Seek, We Strive, We Soar

MID-YEAR EXAMINATION

Name:	Reg. No:	Class:	
Calculator Model:		· . ·	
SEC1EXPRESS		DATE: 12MA	XY 2014
MATHEMATICS			
MAX MARKS: 80	 -	DURATION:	2 HOURS
			•

READ THESE INSTRUCTIONS FIRST

Write your name, register number and class in the spaces provided at the top of this page. Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 80.

Answer all the questions.

- 1. Calculate
 - (a) $\frac{\left(5\frac{1}{2}\right)^2}{\left(1-\frac{1}{3}\right)^3}$, giving your answer correct to the nearest integer.

Answer(a)[1]

(b) $\sqrt[3]{12.3-4\pi+0.29}$, giving your answer correct to 3 significant figures.

Answer(b)[1]

2. Given that p = 2 and q = -3, fill in the blanks with '<', '=' or '>'.

(a)
$$2q \div 3 + 2$$
 ____ 3

Answer(a)[1]

(b) $5q^2 - 36p$ ___ - 29

Answer(b)[1]

3. If you add 7 to a certain integer, the result is a positive number, but if you add 5 to it, the result is a negative number. Find this integer.

Answer[1]

4. By rounding each number to 1 significant figure, estimate the value of $\frac{8.4 \times \sqrt[3]{998}}{0.432 \times 31.99}$. Show your working.

Answer[2

5. Arrange the following numbers in ascending order.

$$-4.7, \frac{19}{4}, -4.7, \sqrt{22}$$

6. (a	Express 5.973 correct to 1 decimal place.	
	•	en e
		Answer(a)[1]
	(b) Express 364.51 correct to 2 significan	at figures.
	(c) Use your answers in parts (a) and (b	Answer(b)[1]) to estimate the value of 364.51÷5.973.
		Answer(c)[1]
7.	Consider the following eight numbers:	
	$\sqrt{36}$, 81, 17, $\sqrt{169}$, 5 ² , π , $\sqrt{7}$	$7,\frac{22}{7}$
	Write down	
	(a) the square number(s),	
		Answer(a)[1]
	(b) the prime number(s),	
		Answer(b)[1]
	(c) the irrational number(s).	
		Answer(c)[1]

S

5	
Written as a product of its prime factors,	
$p \text{ is } 2^6 \times 3^3,$	
q is $2^3 \times 3 \times 5^2$,	and the second of the second o
r is $2^2 \times 3^2 \times 7$.	
Find	
(a) the cube root of p, giving your answer in	n index notation,
	Answer(a)[1]
(b) the lowest common multiple of p, q and	r, giving your answer in index notation,
	Answer(b)[1]
(c) the greatest number that will divide n	
	Answer(c)[1]
Factorise each of the following completely	
(a) $15y - 12y^2$,	
	•.
	Answer(a)[1]
(b) $a(4b-5c)+(5c-4b)$.	
	Written as a product of its prime factors, p is $2^6 \times 3^3$, q is $2^3 \times 3 \times 5^2$, r is $2^2 \times 3^2 \times 7$. Find (a) the cube root of p , giving your answer in the cube root of p , giving your answer in (c) the greatest number that will divide p , q and q factorise each of the following completely: (a) $15y - 12y^2$,

Answer(b) [2]

- 10. Last month, Nicole spent $\frac{4}{9}$ of her monthly salary on food, $\frac{1}{5}$ of her monthly salary on transportation and saved the rest.
 - (i) What fraction of her salary did she save?

Answer(i)[1]

(ii) Nicole spent a further $\frac{2}{3}$ of her savings on a present for her mother.

What fraction of her salary did she have left?

Answer(ii)[2]

11. Solve the following equations:

(a) 3a+2=4a-10,

Answer(a)[1]

(b) $\frac{8}{2\nu-1} = 7$.

Answer(b)[2]

12. Three traffic lights along a street turn red at regular intervals of 1 minute, 1 minute 10 seconds and 3 minutes 30 seconds respectively. If all the traffic lights turned red at the same time at 0830, find the next time this will occur again.

13. The diagram below shows a rectangle with its length and breadth as indicated. Find the value of p and q.

 $(\frac{1}{2}p+2) cm$ (2p-1) cm (2p-1) cm

Answer p =

q =[3]

					8				
14.	An in	terior angle o	of a regula	ar polygon is	four time	s its ex	cterior ang	de.	
	Find t	he number o	f sides of	the polygon	· ·				•
					· .		-		
			•			· <u>.</u>		a e	· · .
				•	Ansv	ver	••••••	•••••	.sides [3]
15.	Jess t	ravelled fron	a CityA t	o CityB usin	g differen	t mode	es of trans	port. She co	vered $\frac{5}{9}$ of
		ourney by tra						the journey	on foot.
	(b)	If she travel			in as com	pared	to the jour	ney by bus,	

Answer(b)km [2]

16. In the diagram below, the straight line PQR is parallel to ST and QS is parallel to RU. PS = QS, $\angle SQR = 116^{\circ}$ and $\angle UTS = 39^{\circ}$.

State all geometrical reasons clearly.

Calculate

(a)∠x,

	· ·			
Answer(a)	•••••	•	۰°	[1]

(b)∠*y*,

(c)∠z.

Answer(c)° [2]

17. Simplify the following expressions:

(a)
$$1+\frac{a+1}{2}+\frac{3}{2}$$
,

Answer(a)[2]

(b) $\frac{2x-5y}{7} - \frac{x-6y}{2}$

18.	"A prime number is a whole number greate	r than 1, with exactly 2 factors, 1 and itself."
	Given that p and q are prime numbers, dete	rmine if each statement is true or false.
	Explain your answer.	• • • • • • • • • • • • • • • • • • •
	(a) 5p is a prime number.	
	Answer(a)	•••••
•		[2]
•	(b) $q + q + q + q$ is a composite number.	· · · · · · · · · · · · · · · · · · ·
	Answer(b)	
<u> </u>		[2]
19.	Simplify the following expressions:	
	(a) $-5a + 8b + 2a - b$,	
		Answer(a)[1]
	(b) $6(2m-n)+2n-m$,	
		Answer(b)[2]
	(c) $4t - [5s - (t+s)]$.	

Answer(c) [2]

		• • • • • • • • • • • • • • • • • • •							
20.	Katie	e bought 2 vanguard sheets each measuring 70 cm by 90 cm.							
	She	She cut out square cards of identical size from the vanguard sheets such that there was no wastage.							
	wast								
	(i)	(i) What is the largest possible length of the side of each square card she cut out?							
. '									
		Answer(i)cm [2]							
	(ii)	What is the total number of square cards she cut out such that there was no							
	(**)	wastage?							
	٠.	wastago:							
	•	Answer(ii)square cards [1]							
	(iii)	If Katiewants to use an equal number of square cards to write her revision notes for							
		each of her 5 subjects.							
		What is the maximum number of square cards she can use for each subject?							
		How many square card(s) will be left over?							
		·							
		Answer(iii)square cards used[1]							

.....square card(s) left [1]

 The Benjamin Sheares Bridge is divided into three sections. The first section is x m long. The last section is 250m longer than the first section. The middle section is twice as long as the last section. (i) Write down an expression, in terms of x for, (a) the length of the last section, Answer(i)(a)		
The last section is 250m longer than the first section. The middle section is twice as long as the last section. (i) Write down an expression, in terms of x for, (a) the length of the last section, Answer(i)(a)	21.	The Benjamin Sheares Bridge is divided into three sections.
The middle section is twice as long as the last section. (i) Write down an expression, in terms of x for, (a) the length of the last section, Answer(i)(a)		The first section is x m long.
 (i) Write down an expression, in terms of x for, (a) the length of the last section, Answer(i)(a)		The last section is 250m longer than the first section.
(iii) Solve the equation, and find the length of the first section of the bridge. Answer(i)(a)		The middle section is twice as long as the last section.
Answer(i)(a)		(i) Write down an expression, in terms of x for,
(ii) The Benjamin Sheares Bridge is 1.8km long. Write down an equation, in terms of x , to represent this information, and show that it reduces to $1800 = 4x + 750$. Answer: [1] (iii) Solve the equation, and find the length of the first section of the bridge.		(a) the length of the last section,
(ii) The Benjamin Sheares Bridge is 1.8km long. Write down an equation, in terms of x , to represent this information, and show that it reduces to $1800 = 4x + 750$. Answer: [1] (iii) Solve the equation, and find the length of the first section of the bridge.		
(ii) The Benjamin Sheares Bridge is 1.8km long. Write down an equation, in terms of x , to represent this information, and show that it reduces to $1800 = 4x + 750$. Answer: [1] (iii) Solve the equation, and find the length of the first section of the bridge.		
Answer(i)(b)		Answer(i)(a)
 (ii) The Benjamin Sheares Bridge is 1.8km long. Write down an equation, in terms of x, to represent this information, and show that it reduces to 1800 = 4x + 750. Answer: [1] (iii) Solve the equation, and find the length of the first section of the bridge. 		(b) the length of the middle section.
 (ii) The Benjamin Sheares Bridge is 1.8km long. Write down an equation, in terms of x, to represent this information, and show that it reduces to 1800 = 4x + 750. Answer: [1] (iii) Solve the equation, and find the length of the first section of the bridge. 		
 (ii) The Benjamin Sheares Bridge is 1.8km long. Write down an equation, in terms of x, to represent this information, and show that it reduces to 1800 = 4x + 750. Answer: [1] (iii) Solve the equation, and find the length of the first section of the bridge. 	•	
 (ii) The Benjamin Sheares Bridge is 1.8km long. Write down an equation, in terms of x, to represent this information, and show that it reduces to 1800 = 4x + 750. Answer: [1] (iii) Solve the equation, and find the length of the first section of the bridge. 		
Write down an equation, in terms of x , to represent this information, and show that it reduces to $1800 = 4x + 750$. Answer: [1] (iii) Solve the equation, and find the length of the first section of the bridge.		Answer(i)(b)
Write down an equation, in terms of x , to represent this information, and show that it reduces to $1800 = 4x + 750$. Answer: [1] (iii) Solve the equation, and find the length of the first section of the bridge.		(ii) The Benjamin Sheares Bridge is 1.8km long.
reduces to $1800 = 4x + 750$. Answer: [1] (iii) Solve the equation, and find the length of the first section of the bridge.		
Answer: [1] (iii)Solve the equation, and find the length of the first section of the bridge.		
(iii)Solve the equation, and find the length of the first section of the bridge.	•	
		(iii)Solve the equation, and find the length of the first section of the bridge.
Answer(iii) m [2]		Answer(iii)

22. In the answer space, construct and label a quadrilateral PQRS such that $\angle PQR = 85^{\circ}$, $\angle QRS = 65^{\circ}$, PQ = 6cm and QR = 8.3cm.

The side RSis drawn in the answer space.

(a) Using ruler, protractor and compasses only, complete the quadrilateral. [2]

Answer:

R

- (b) On the same diagram, construct
 - (i) the bisector of angle QPS,

[1]

- (ii) the perpendicular bisector of side RS. [1]
- (c) These two bisectors meet at T.

 Mark the point T, measure and write down the size of $\angle SPT$.

Answer(c)° [2]

23. (a) Find the value of x.

[Hint: Look out for 'triangles'.]

Answer(a).....° [2]

(b) The diagram shows three regular pentagons. Find the value of p and of q.

Answer(b)p =....° [2]

q =°[1]

(c) In the diagram, AB, DE and FCG are parallel. Given that $\angle ABC = 84^{\circ}$ and $\angle BCD = 39^{\circ}$. Find reflex $\angle CDE$.

Answer(c)° [2]

	ANSWER SCHEM	1E	
1(a)	102	13	p = 8
			q = 6
1(b)	0.287	14	n = 10
2(a)	<	15(a)	1
		15(4)	$\left \frac{1}{9}\right $
2(b)	>	15(b)	
3	x = -6	16(a)	157.5 km
4.		16(b)	64° (int∠)
1.	$6\frac{2}{3}$	10(0)	52° (base of iso triangle)
5	3	166	
3 .	-47, -47, 12	- 16(c)	103° (alt∠)
6(a)	6.0	17(a)	
	0.0	17(a)	$\frac{a+6}{a+6}$
6(h)	260	4	2
6(b)	360	17(b)	32y-3x
			14
6(c)	60	18(a)	No
			Using an integer to substitute into p and explain that
			it is not a prime number. E.g. if $p = 2$, $2p = 10$ which
			is not a prime number. OR
		••	
			It has more than 2 factors other than 1 and itself.
			e.g. p / 5 (any 1)
7(a)	81, 5 ²	100)	
/(a)	01, 3	18(b)	Yes. Reasoning must be general. E.g. Since q+q
			+q+q =4q. It has more than 2 factors other than 1 and
			itself. (4, 2, q, any 1 mentioned)
7(b)	17, √169	10(a)	2
7(c)	$\Pi, \sqrt{7}$	19(a)	-3a + 7b
8(a)	$2^2 \times 3$	19(b)	11m - 4n
8(b)	$2^6 \times 3^2 \times 5^2 \times 7$	19(c)	5t – 4s
8(c)	12	20(i)	10
9(a)	3y(5-4y)	20(ii)	126
9(b)	(a-1)(4b-5c)	20(iii)	25 square cards used. 1 square card left.
10(i)	16	21(i)(a)	(x + 250)
10(1)	45	21(i)(b)	2x + 500
10(::)		<u> </u>	
10(ii)	16	21(iii)	x = 262.5
	135		
11(a)	a = 12	22(c)	47 (±1)
11(b)	y=1-1	23(a)	45°
	$y=1\frac{1}{14}$		
12	0837	23(b)	p = 108°, q = 144°
		23(c)	225°
		25(0)	LLJ